Avoiding prior-data conflict in regression models via mixture priors

被引:9
|
作者
Egidi, Leonardo [1 ]
Pauli, Francesco [1 ]
Torelli, Nicola [1 ]
机构
[1] Univ Trieste, Dept Econ Business Math & Stat, Trieste, Italy
关键词
Bayesian model; generative model; mixture prior; prior-data conflict; regression; PRIOR DISTRIBUTIONS; INFERENCE; SELECTION;
D O I
10.1002/cjs.11637
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bayesian-80 model consists of the prior-likelihood pair. A prior-data conflict arises whenever the prior allocates most of its mass to regions of the parameter space where the likelihood is relatively low. Once a prior-data conflict is diagnosed, what to do next is a hard question to answer. We propose an automatic prior elicitation that involves a two-component mixture of a diffuse and an informative prior distribution that favours the first component if a conflict emerges. Using various examples, we show that these mixture priors can be useful in regression models as a device for regularizing the estimates and retrieving useful inferential conclusions.
引用
收藏
页码:491 / 510
页数:20
相关论文
共 50 条
  • [41] Clustering Spatial Data via Mixture Models with Dynamic Weights
    Same, Allou
    [J]. TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2020, 12237 : 128 - 138
  • [42] Inference after checking multiple Bayesian models for data conflict and applications to mitigating the influence of rejected priors
    Bickel, David R.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 66 : 53 - 72
  • [43] A data-driven reversible jump for estimating a finite mixture of regression models
    Gustavo Alexis Sabillón
    Luiz Gabriel Fernandes Cotrim
    Daiane Aparecida Zuanetti
    [J]. TEST, 2023, 32 : 350 - 369
  • [44] A data-driven reversible jump for estimating a finite mixture of regression models
    Sabillon, Gustavo Alexis
    Fernandes Cotrim, Luiz Gabriel
    Zuanetti, Daiane Aparecida
    [J]. TEST, 2023, 32 (01) : 350 - 369
  • [45] Gaussian Scale Mixture Models for Robust Linear Multivariate Regression with Missing Data
    Ala-Luhtala, Juha
    Piche, Robert
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 791 - 813
  • [46] Classification of large data sets with mixture models via sufficient EM
    Steiner, P. M.
    Hudec, M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) : 5416 - 5428
  • [47] Clustering of High-Dimensional Data via Finite Mixture Models
    McLachlan, Geoff J.
    Baek, Jangsun
    [J]. ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 33 - +
  • [48] Probabilistic Data Association via Mixture Models for Robust Semantic SLAM
    Doherty, Kevin J.
    Baxter, David P.
    Schneeweiss, Edward
    Leonard, John J.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1098 - 1104
  • [49] Data visualization via latent variables and mixture models: a brief survey
    Priam, Rodolphe
    Nadif, Mohamed
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (03) : 807 - 819
  • [50] Data visualization via latent variables and mixture models: a brief survey
    Rodolphe Priam
    Mohamed Nadif
    [J]. Pattern Analysis and Applications, 2016, 19 : 807 - 819