Avoiding prior-data conflict in regression models via mixture priors

被引:9
|
作者
Egidi, Leonardo [1 ]
Pauli, Francesco [1 ]
Torelli, Nicola [1 ]
机构
[1] Univ Trieste, Dept Econ Business Math & Stat, Trieste, Italy
关键词
Bayesian model; generative model; mixture prior; prior-data conflict; regression; PRIOR DISTRIBUTIONS; INFERENCE; SELECTION;
D O I
10.1002/cjs.11637
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bayesian-80 model consists of the prior-likelihood pair. A prior-data conflict arises whenever the prior allocates most of its mass to regions of the parameter space where the likelihood is relatively low. Once a prior-data conflict is diagnosed, what to do next is a hard question to answer. We propose an automatic prior elicitation that involves a two-component mixture of a diffuse and an informative prior distribution that favours the first component if a conflict emerges. Using various examples, we show that these mixture priors can be useful in regression models as a device for regularizing the estimates and retrieving useful inferential conclusions.
引用
收藏
页码:491 / 510
页数:20
相关论文
共 50 条
  • [31] Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models
    Fung, Tsz Chai
    Badescu, Andrei L.
    Lin, X. Sheldon
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2021,
  • [32] Mixture Regression Models for Closed Population Capture-Recapture Data
    Tounkara, Fode
    Rivest, Louis-Paul
    [J]. BIOMETRICS, 2015, 71 (03) : 721 - 730
  • [33] Probabilistic Mixture Regression Models for Alignment of LC-MS Data
    Befekadu, Getachew K.
    Tadesse, Mahlet G.
    Tsai, Tsung-Heng
    Ressom, Habtom W.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (05) : 1417 - 1424
  • [34] Transductive Bayesian regression via manifold learning of prior data structure
    Park, Hyejin
    Kim, Heun A.
    Yang, Seung-ho
    Lee, Jaewook
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (16) : 12557 - 12563
  • [35] Estimating the class prior for positive and unlabelled data via logistic regression
    Małgorzata Łazęcka
    Jan Mielniczuk
    Paweł Teisseyre
    [J]. Advances in Data Analysis and Classification, 2021, 15 : 1039 - 1068
  • [36] Estimating the class prior for positive and unlabelled data via logistic regression
    Lazecka, Malgorzata
    Mielniczuk, Jan
    Teisseyre, Pawel
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (04) : 1039 - 1068
  • [37] Regression models for exceedance data via the full likelihood
    Fernando Ferraz do Nascimento
    Dani Gamerman
    Hedibert Freitas Lopes
    [J]. Environmental and Ecological Statistics, 2011, 18 : 495 - 512
  • [38] Regression models for exceedance data via the full likelihood
    do Nascimento, Fernando Ferraz
    Gamerman, Dani
    Lopes, Hedibert Freitas
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2011, 18 (03) : 495 - 512
  • [39] Single Image Super-Resolution via Multiple Mixture Prior Models
    Huang, Yuanfei
    Li, Jie
    Gao, Xinbo
    He, Lihuo
    Lu, Wen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (12) : 5904 - 5917
  • [40] Estimation and identification of regression models via prior-free Bayesian inference
    Jiang, XQ
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 501 - 508