A data-driven reversible jump for estimating a finite mixture of regression models

被引:0
|
作者
Gustavo Alexis Sabillón
Luiz Gabriel Fernandes Cotrim
Daiane Aparecida Zuanetti
机构
[1] Universidade Federal de São Carlos,Departamento de Estatística
[2] Boa Vista SCPC,Data Science Area
来源
TEST | 2023年 / 32卷
关键词
Classification procedure; Data-driven methods; Model selection; Robust regression model; 62;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a data-driven reversible jump (DDRJ) method for selecting and estimating a mixture of regression models in a single run, which can also be applied as a robust regression model to outliers. We compare the clustering and estimation performance of the proposed method with Expectation–Maximization and Gibbs sampler algorithms combined with model selection criteria in synthetic data sets. Under tested conditions, DDRJ outperforms these traditional methods in identifying the number of groups, classification and precision of estimates. When compared with traditional reversible jump algorithms, the data-driven procedure simplifies the calculations and implementation and shows a better mixing and faster convergence. Finally, we apply the proposed method to analyze two well-studied data sets: tone perception (a simple data set) and baseball salaries (a more complex data set with a larger number of covariates).
引用
收藏
页码:350 / 369
页数:19
相关论文
共 50 条
  • [1] A data-driven reversible jump for estimating a finite mixture of regression models
    Sabillon, Gustavo Alexis
    Fernandes Cotrim, Luiz Gabriel
    Zuanetti, Daiane Aparecida
    [J]. TEST, 2023, 32 (01) : 350 - 369
  • [2] Data-Driven Reversible Jump for QTL Mapping
    Zuanetti, Daiane Aparecida
    Milan, Luis Aparecido
    [J]. GENETICS, 2016, 202 (01) : 25 - +
  • [3] Bayesian Modeling for Epistasis Analysis Using Data-Driven Reversible Jump
    Zuanetti, Daiane Aparecida
    Milan, Luis Aparecido
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1495 - 1506
  • [4] A data-driven process for estimating nonlinear material models
    Kou, X. Y.
    Tan, S. T.
    Lipson, Hod
    [J]. INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 599 - +
  • [5] Data-driven estimation of air mass using Gaussian mixture regression
    Kolewe, B.
    Haghani, A.
    Beckmann, R.
    Noack, R.
    Jeinsch, T.
    [J]. 2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 2433 - 2438
  • [6] Assessment of data-driven models for estimating total sediment discharge
    Reza Piraei
    Majid Niazkar
    Seied Hosein Afzali
    [J]. Earth Science Informatics, 2023, 16 : 2795 - 2812
  • [7] Application of unsupervised learning of finite mixture models in ASTER VNIR data-driven land use classification
    Zhao, Bo
    Yang, Fan
    Zhang, Rongzhen
    Shen, Junping
    Pilz, Juergen
    Zhang, Dehui
    [J]. JOURNAL OF SPATIAL SCIENCE, 2021, 66 (01) : 89 - 112
  • [8] Assessment of data-driven models for estimating total sediment discharge
    Piraei, Reza
    Niazkar, Majid
    Afzali, Seied Hosein
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (3) : 2795 - 2812
  • [9] Sparse regression for data-driven deterrence functions in gravity models
    Rubio-Herrero, Javier
    Munuzuri, Jesus
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023, 323 (1-2) : 153 - 174
  • [10] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    [J]. COMPUTERS & STRUCTURES, 2021, 252