Arakelov theory of noncommutative arithmetic curves

被引:2
|
作者
Borek, Thomas [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Orders; Semisimple algebras; Arakelov theory; Arithmetic curves; Heights; HEIGHTS;
D O I
10.1016/j.jnt.2010.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this article is to initiate Arakelov theory in a noncommutative setting. More precisely, we are concerned with Arakelov theory of noncommutative arithmetic curves. A noncommutative arithmetic curve is the spectrum of a Z-order O in a finite-dimensional semisimple Q-algebra. Our first main result is an arithmetic Riemann-Roch formula in this setup. We proceed with introducing the Grothendieck group (K) over cap (0)(O) of arithmetic vector bundles on a noncommutative arithmetic curve SpecO and show that there is a uniquely determined degree map (deg) over cap (O) : (K) over cap (0)(O) -> R, which we then use to define a height function H(O). We prove a duality theorem for the height H(O). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条