The purpose of this article is to initiate Arakelov theory in a noncommutative setting. More precisely, we are concerned with Arakelov theory of noncommutative arithmetic curves. A noncommutative arithmetic curve is the spectrum of a Z-order O in a finite-dimensional semisimple Q-algebra. Our first main result is an arithmetic Riemann-Roch formula in this setup. We proceed with introducing the Grothendieck group (K) over cap (0)(O) of arithmetic vector bundles on a noncommutative arithmetic curve SpecO and show that there is a uniquely determined degree map (deg) over cap (O) : (K) over cap (0)(O) -> R, which we then use to define a height function H(O). We prove a duality theorem for the height H(O). (C) 2010 Elsevier Inc. All rights reserved.
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Thorne, Jack A.
Kaletha, Tasho
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USAUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England