共 50 条
Arakelov theory of noncommutative arithmetic curves
被引:2
|作者:
Borek, Thomas
[1
]
机构:
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词:
Orders;
Semisimple algebras;
Arakelov theory;
Arithmetic curves;
Heights;
HEIGHTS;
D O I:
10.1016/j.jnt.2010.09.002
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The purpose of this article is to initiate Arakelov theory in a noncommutative setting. More precisely, we are concerned with Arakelov theory of noncommutative arithmetic curves. A noncommutative arithmetic curve is the spectrum of a Z-order O in a finite-dimensional semisimple Q-algebra. Our first main result is an arithmetic Riemann-Roch formula in this setup. We proceed with introducing the Grothendieck group (K) over cap (0)(O) of arithmetic vector bundles on a noncommutative arithmetic curve SpecO and show that there is a uniquely determined degree map (deg) over cap (O) : (K) over cap (0)(O) -> R, which we then use to define a height function H(O). We prove a duality theorem for the height H(O). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文