Arakelov Theory on Arithmetic Surfaces Over a Trivially Valued Field
被引:0
|
作者:
Chen, Huayi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, FranceUniv Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France
Chen, Huayi
[1
]
Moriwaki, Atsushi
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, JapanUniv Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France
Moriwaki, Atsushi
[2
]
机构:
[1] Univ Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France
[2] Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, Japan
In this article, we consider an analogue of Arakelov theory of arithmetic surfaces over a trivially valued field. In particular, we establish an arithmetic Hilbert-Samuel theorem and study the effectivity up to R-linear equivalence of pseudoeffective metrised R-divisors.