Adeles;
Local fields;
Global fields;
Arakelov geometry;
Arithmetic surfaces;
Intersection theory;
Number fields;
RESIDUES;
D O I:
10.1016/j.jnt.2019.10.010
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We work with completed adelic structures on an arithmetic surface and justify that the construction under consideration is compatible with Arakelov geometry. The ring of completed adeles is algebraically and topologically self-dual and fundamental adelic subspaces are self orthogonal with respect to a natural differential pairing. We show that the Arakelov intersection pairing can be lifted to an idelic intersection pairing. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Univ Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, FranceUniv Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France
Chen, Huayi
Moriwaki, Atsushi
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, JapanUniv Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France