High-performance InP-based midinfrared quantum cascade lasers at Northwestern University

被引:16
|
作者
Razeghi, Manijeh [1 ]
Bai, Yanbo [1 ]
Slivken, Steven [1 ]
Darvish, Shaban R. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA
关键词
quantum cascade lasers; high power; high wall plug efficiency; broad area semiconductor lasers; photonic crystal distributed feedback lasers; CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE;
D O I
10.1117/1.3497623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 mu m, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3497623]
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Regrowth in high-performance InP-based DHBT devices
    Gambin, V
    Mensa, D
    Lange, M
    Cavus, A
    Chang, PC
    Sawdai, D
    Block, T
    Gutierrez-Aitken, A
    Oki, A
    [J]. STATE-OF-THE-ART PROGRAM ON COMPOUND SEMICONDUCTORS XL (SOTAPOCS XL) AND NARROW BANDGAP OPTOELECTRONIC MATERIALS AND DEVICES II, 2004, 2004 (02): : 77 - 86
  • [22] Fe-implantation for rear-facet coatings of InP-based quantum cascade lasers
    Wienold, M.
    Semtsiv, M. P.
    Dressler, S.
    Masselink, W. T.
    Potzger, K.
    Winnerl, S.
    Helm, M.
    [J]. ELECTRONICS LETTERS, 2008, 44 (04) : 293 - 295
  • [23] Key issues associated with low threshold current density for InP-based quantum cascade lasers
    Li, A. Z.
    Li, H.
    Xu, G. Y.
    Zhang, Y. G.
    Lin, C.
    Zhu, C.
    Wei, L.
    Li, Y. Y.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2007, 301 (129-133) : 129 - 133
  • [24] Thermal characteristics of InP-based mid-infrared quantum cascade lasers at λ∼ 8.8 Aμm
    Lee, Hee Kwan
    Yu, Jae Su
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (10) : 1757 - 1761
  • [25] Thermal characteristics of InP-based mid-infrared quantum cascade lasers at λ ∼ 8.8 µm
    Hee Kwan Lee
    Jae Su Yu
    [J]. Journal of the Korean Physical Society, 2012, 60 : 1757 - 1761
  • [26] Room temperature λ ∼ 3.3 μm InP-based InGaAs/AlAs(Sb) quantum cascade lasers
    Zhang, S. Y.
    Revin, D. G.
    Commin, J. P.
    Kennedy, K.
    Krysa, A. B.
    Cockburn, J. W.
    [J]. ELECTRONICS LETTERS, 2010, 46 (06) : 439 - U84
  • [27] High Performance InP-Based Quantum Dash Semiconductor Mode-Locked Lasers for Optical Communications
    Duan, Guang-Hua
    Shen, Alexandre
    Akrout, Akram
    Van Dijk, Frederic
    Lelarge, Francois
    Pommereau, Frederic
    LeGouezigou, Odile
    Provost, Jean-Guy
    Gariah, Harry
    Blache, Fabrice
    Mallecot, Franck
    Merghem, Kamel
    Martinez, Anthony
    Ramdane, Abderrahim
    [J]. BELL LABS TECHNICAL JOURNAL, 2009, 14 (03) : 63 - 84
  • [28] High performance InP-based InAs triangular quantum well lasers operating beyond 2 μm
    Gu, Y.
    Zhang, Y. G.
    Cao, Y. Y.
    Chen, X. Y.
    Li, Hsby
    Zhou, L.
    [J]. NOVEL IN-PLANE SEMICONDUCTOR LASERS XIII, 2014, 9002
  • [29] High-gain InP-based quantum dot lasers for telecommunication applications
    Gilfert, Christian
    Ivanov, Vitalii
    Oehl, Nikolas
    Yacob, Matusala
    Reithmaier, Johann Peter
    Gready, David
    Eisenstein, Gadi
    [J]. 2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 167 - +
  • [30] Applications of midinfrared quantum cascade lasers to spectroscopy
    Hancock, Gus
    Ritchie, Grant
    van Helden, Jean-Pierre
    Walker, Richard
    Weidmann, Damien
    [J]. OPTICAL ENGINEERING, 2010, 49 (11)