High-performance InP-based midinfrared quantum cascade lasers at Northwestern University

被引:16
|
作者
Razeghi, Manijeh [1 ]
Bai, Yanbo [1 ]
Slivken, Steven [1 ]
Darvish, Shaban R. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA
关键词
quantum cascade lasers; high power; high wall plug efficiency; broad area semiconductor lasers; photonic crystal distributed feedback lasers; CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE;
D O I
10.1117/1.3497623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 mu m, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3497623]
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Applications of midinfrared quantum cascade lasers to spectroscopy
    Hancock, Gus
    Ritchie, Grant
    van Helden, Jean-Pierre
    Walker, Richard
    Weidmann, Damien
    [J]. OPTICAL ENGINEERING, 2010, 49 (11)
  • [32] Design and analysis of high-performance terahertz quantum cascade lasers
    Sekine, Norihiko
    Hosako, Iwao
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 6, 2009, 6 (06): : 1428 - 1431
  • [33] The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm
    Li, Y. Y.
    Li, A. Z.
    Gu, Y.
    Zhang, Y. G.
    Li, H. S. B. Y.
    Wang, K.
    Fang, X.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2013, 378 : 587 - 590
  • [34] Non-equilibrium electronic distribution within one period of InP-based quantum cascade lasers
    Scarpa, G
    Lugli, P
    Ulbrich, N
    Abstreiter, G
    Amann, MC
    Manenti, M
    Compagnone, F
    Di Carlo, A
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2004, 19 (04) : S342 - S344
  • [35] Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing
    Mann, C
    Yang, QK
    Fuchs, F
    Bronner, N
    Köhler, K
    Beyer, T
    Braun, T
    Lambrecht, A
    [J]. NOVEL IN-PLANE SEMICONDUCTOR LASERS III, 2004, 5365 : 173 - 183
  • [36] High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers
    Bandyopadhyay, N.
    Slivken, S.
    Bai, Y.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [37] High performance GaAs based quantum cascade lasers
    Sirtori, C.
    Page, H.
    Becker, C.
    Kruck, P.
    Glastre, G.
    Stellmacher, M.
    [J]. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 2000, : 265 - 266
  • [38] InP-based quantum cascade detectors in the mid-infrared
    Graf, M
    Hoyler, N
    Giovannini, M
    Faist, J
    Hofstetter, D
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (24)
  • [39] High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si
    Slivken, Steven
    Razeghi, Manijeh
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2022, 58 (06)
  • [40] Thermal Simulation of GaAs-Based Midinfrared Quantum Cascade Lasers
    Shi, Y. B.
    Aksamija, Z.
    Knezevic, I.
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2012, : 121 - 122