Exponentially Fitted and Trigonometrically Fitted Two-Derivative Runge-Kutta-Nystrom Methods for Solving y"(x) = f (x, y, y′)

被引:2
|
作者
Mohamed, Tahani Salama [1 ,2 ]
Senu, Norazak [1 ,3 ]
Ibrahim, Zarina Bibi [1 ,3 ]
Long, Nik Mohd Asri Nik [1 ,3 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Misrata Univ, Fac Sci, Dept Math, Misrata, Libya
[3] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-SOLUTION; EMBEDDED PAIR; ARKN METHODS; FAMILIES;
D O I
10.1155/2018/7689854
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-Nystrom (TDRKN) methods are being constructed. Exponentially fitted and trigonometrically fitted TDRKN methods have the favorable feature that they integrate exactly second-order systems whose solutions are linear combinations of functions {exp(wx), exp(-wx)} and {sin(wx), cos(wx)} respectively, when w is an element of R, the frequency of the problem. The results of numerical experiments showed that the new approaches are more efficient than existing methods in the literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] High-order exponentially fitted and trigonometrically fitted explicit two-derivative Runge–Kutta-type methods for solving third-order oscillatory problems
    Khai Chien Lee
    Norazak Senu
    Ali Ahmadian
    Siti Nur Iqmal Ibrahim
    Mathematical Sciences, 2022, 16 : 281 - 297
  • [32] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [33] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [34] High-order exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-type methods for solving third-order oscillatory problems
    Lee, Khai Chien
    Senu, Norazak
    Ahmadian, Ali
    Ibrahim, Siti Nur Iqmal
    MATHEMATICAL SCIENCES, 2022, 16 (03) : 281 - 297
  • [35] Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′)
    Samuel N. Jator
    S. Swindell
    R. French
    Numerical Algorithms, 2013, 62 : 13 - 26
  • [36] Implicit symmetric and symplectic exponentially fitted modified Runge-Kutta-Nystrom methods for solving oscillatory problems
    Chen, Bing Zhen
    Zhai, Wen Juan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [37] FAMILIES OF 3-STAGE 3RD ORDER RUNGE-KUTTA-NYSTROM METHODS FOR Y''=F(X,Y,Y')
    CHAWLA, MM
    SHARMA, SR
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN): : 375 - 386
  • [38] A class of implicit symmetric symplectic and exponentially fitted Runge-Kutta-Nystrom methods for solving oscillatory problems
    Zhai, Huai Yuan
    Zhai, Wen Juan
    Chen, Bing Zhen
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [39] A Fourth Order Modified Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom method
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1176 - 1180
  • [40] Computation of the eigenvalues of the Schrodinger equation by exponentially-fitted Runge-Kutta-Nystrom methods
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (02) : 167 - 176