Exponentially Fitted and Trigonometrically Fitted Two-Derivative Runge-Kutta-Nystrom Methods for Solving y"(x) = f (x, y, y′)

被引:2
|
作者
Mohamed, Tahani Salama [1 ,2 ]
Senu, Norazak [1 ,3 ]
Ibrahim, Zarina Bibi [1 ,3 ]
Long, Nik Mohd Asri Nik [1 ,3 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Misrata Univ, Fac Sci, Dept Math, Misrata, Libya
[3] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-SOLUTION; EMBEDDED PAIR; ARKN METHODS; FAMILIES;
D O I
10.1155/2018/7689854
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-Nystrom (TDRKN) methods are being constructed. Exponentially fitted and trigonometrically fitted TDRKN methods have the favorable feature that they integrate exactly second-order systems whose solutions are linear combinations of functions {exp(wx), exp(-wx)} and {sin(wx), cos(wx)} respectively, when w is an element of R, the frequency of the problem. The results of numerical experiments showed that the new approaches are more efficient than existing methods in the literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 651 - 667
  • [22] CHECKING QUICKLY THE ORDER OF A RUNGE-KUTTA-NYSTROM METHOD FOR Y'' = F(X,Y)
    BECKER, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (03): : 190 - 190
  • [23] Exponentially fitted two-step hybrid methods for y" = f (x, y)
    D'Ambrosio, R.
    Esposito, E.
    Paternoster, B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4888 - 4897
  • [24] A general family of two step Runge-Kutta-Nystrom methods for y" = f (x, y) based on algebraic polynomials
    Paternoster, Beatrice
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 700 - 707
  • [25] Functionally fitted Runge-Kutta-Nystrom methods
    Hoang, N. S.
    Sidje, R. B.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 129 - 150
  • [26] EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE-KUTTA METHODS FOR THE SCHRODINGER EQUATION
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (10):
  • [27] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [28] Embedded Exponentially-Fitted Explicit Runge-Kutta-Nystrom Methods for Solving Periodic Problems
    Demba, Musa Ahmed
    Kumam, Poom
    Watthayu, Wiboonsak
    Phairatchatniyom, Pawicha
    COMPUTATION, 2020, 8 (02)
  • [29] An exponentially fitted 6(4) pair of explicit Runge-Kutta-Nystrom methods
    Kalogiratou, Z.
    Monovasllls, Th.
    Simos, T. E.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1253 - +
  • [30] Symmetric and symplectic exponentially fitted Runge-Kutta-Nystrom methods for Hamiltonian problems
    You, Xiong
    Chen, Bingzhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 94 : 76 - 95