Exponentially Fitted and Trigonometrically Fitted Two-Derivative Runge-Kutta-Nystrom Methods for Solving y"(x) = f (x, y, y′)

被引:2
|
作者
Mohamed, Tahani Salama [1 ,2 ]
Senu, Norazak [1 ,3 ]
Ibrahim, Zarina Bibi [1 ,3 ]
Long, Nik Mohd Asri Nik [1 ,3 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Misrata Univ, Fac Sci, Dept Math, Misrata, Libya
[3] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-SOLUTION; EMBEDDED PAIR; ARKN METHODS; FAMILIES;
D O I
10.1155/2018/7689854
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-Nystrom (TDRKN) methods are being constructed. Exponentially fitted and trigonometrically fitted TDRKN methods have the favorable feature that they integrate exactly second-order systems whose solutions are linear combinations of functions {exp(wx), exp(-wx)} and {sin(wx), cos(wx)} respectively, when w is an element of R, the frequency of the problem. The results of numerical experiments showed that the new approaches are more efficient than existing methods in the literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [12] A PAIR OF RUNGE-KUTTA-NYSTROM FORMULAS FOR Y''=F(X,Y)
    FEHLBERG, E
    FILIPPI, S
    GRAF, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (07): : 265 - 270
  • [13] A Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom Method
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [14] REGIONS OF ABSOLUTE STABILITY OF EXPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR Y'' = F(X, Y, Y')
    CHAWLA, MM
    SUBRAMANIAN, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (02) : 259 - 266
  • [15] Two step Runge-Kutta-Nystrom methods for y" = f (x, y) and P-stability
    Paternoster, B
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 459 - 466
  • [16] Symbolic derivation of Runge-Kutta-Nystrom type order conditions and methods for solving y"′ = f (x,y)
    Famelis, Ioannis Th.
    Tsitouras, Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 297 : 50 - 60
  • [17] Exponentially-fitted and trigonometrically-fitted implicit RKN methods for solving y" = f (t, y)
    Zhai, Wenjuan
    Fu, Shuhuan
    Zhou, Tianchong
    Xiu, Chun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 1449 - 1466
  • [18] Runge-Kutta-Nystrom Stability for a Class of General Linear Methods for y" = f (x, y)
    D'Ambrosio, R.
    Paternoster, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 444 - 447
  • [19] On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods
    Van de Vyver, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (02) : 309 - 318
  • [20] Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations
    Yonglei Fang
    Xiong You
    Qinghe Ming
    Numerical Algorithms, 2014, 65 : 651 - 667