Exponentially Fitted and Trigonometrically Fitted Two-Derivative Runge-Kutta-Nystrom Methods for Solving y"(x) = f (x, y, y′)

被引:2
|
作者
Mohamed, Tahani Salama [1 ,2 ]
Senu, Norazak [1 ,3 ]
Ibrahim, Zarina Bibi [1 ,3 ]
Long, Nik Mohd Asri Nik [1 ,3 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Misrata Univ, Fac Sci, Dept Math, Misrata, Libya
[3] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-SOLUTION; EMBEDDED PAIR; ARKN METHODS; FAMILIES;
D O I
10.1155/2018/7689854
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-Nystrom (TDRKN) methods are being constructed. Exponentially fitted and trigonometrically fitted TDRKN methods have the favorable feature that they integrate exactly second-order systems whose solutions are linear combinations of functions {exp(wx), exp(-wx)} and {sin(wx), cos(wx)} respectively, when w is an element of R, the frequency of the problem. The results of numerical experiments showed that the new approaches are more efficient than existing methods in the literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A promising exponentially-fitted two-derivative Runge-Kutta-Nystrom method for solving y′′ = f(x,y): Application to Verhulst logistic growth model
    Lee, K. C.
    Nazar, R.
    Senu, N.
    Ahmadian, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 28 - 49
  • [2] Exponentially Fitted and Trigonometrically Fitted Explicit Modified Runge-Kutta Type Methods for Solving y′′′x=fx,y,y′
    Ghawadri N.
    Senu N.
    Ismail F.
    Ibrahim Z.B.
    Senu, N. (norazak@upm.edu.my), 2018, Hindawi Limited (2018)
  • [3] Efficient Two-Derivative Runge-Kutta-Nystrom Methods for Solving General Second-Order Ordinary Differential Equations y"(x) = f (x, y, y′)
    Mohamed, T. S.
    Senu, N.
    Ibrahim, Z. B.
    Long, N. M. A. Nik
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [4] On modifications of Runge-Kutta-Nystrom methods for solving y(4) = f(x, y)
    Famelis, I. Th.
    Tsitouras, Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 726 - 734
  • [5] Trigonometrically fitted two-derivative Runge-Kutta-Nystrom methods for second-order oscillatory differential equations
    Chen, Zhaoxia
    Shi, Lei
    Liu, Siyao
    You, Xiong
    APPLIED NUMERICAL MATHEMATICS, 2019, 142 : 171 - 189
  • [6] An embedded 4(3) pair explicit two derivative Runge-Kutta-Nystrom method for solving y"(x) = f(x, y, y′)
    Mohamed, T. S.
    Senu, N.
    Long, N. M. A. Nik
    Ibrahim, Z. B.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
  • [7] ABSOLUTE STABILITY OF EXPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR Y'' = F(X,Y,Y')
    CHAWLA, MM
    SHARMA, SR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (02) : 163 - 168
  • [8] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [9] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [10] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85