Areal prediction of survey data using Bayesian spatial generalised linear models

被引:2
|
作者
Bakar, K. Shuvo [1 ,2 ]
Jin, Huidong [1 ]
机构
[1] Commonwealth Sci & Ind Res Org CSIRO, Data61, Canberra, ACT, Australia
[2] Australian Natl Univ, ANU Ctr Social Res & Methods, Canberra, ACT, Australia
关键词
Bayesian inference; areal prediction; survey data; VARIABLE SELECTION;
D O I
10.1080/03610918.2018.1530787
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The conditional autoregressive approach is popular to analyse data with geocoded boundary. However, spatial prediction is often challenging when observed data are sparse. It becomes more challenging in predicting areal units with different areal boundaries. Hence, this paper develops a spatial generalised linear model for spatial predictions using data from spatially misaligned sparse locations. A spatial basis function associated with the conditional autoregressive models and the kriging method is considered. The proposed model demonstrates its better predictive performance through a simulation study and then is applied to understand the spatial pattern of undecided voting preferences in Australia.
引用
收藏
页码:2963 / 2978
页数:16
相关论文
共 50 条
  • [1] Bayesian prediction of spatial count data using generalized linear mixed models
    Christensen, OF
    Waagepetersen, R
    [J]. BIOMETRICS, 2002, 58 (02) : 280 - 286
  • [2] BAYESIAN PREDICTION FOR SPATIAL GENERALISED LINEAR MIXED MODELS WITH CLOSED SKEW NORMAL LATENT VARIABLES
    Hosseini, Fatemeh
    Mohammadzadeh, Mohsen
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (01) : 43 - 62
  • [3] Spatial generalized linear mixed models with multivariate CAR models for areal data
    Torabi, Mahmoud
    [J]. SPATIAL STATISTICS, 2014, 10 : 12 - 26
  • [4] Data privacy preserving scheme using generalised linear models
    Lee, Min Cherng
    Mitra, Robin
    Lazaridis, Emmanuel
    Lai, An-Chow
    Goh, Yong Kheng
    Yap, Wun-She
    [J]. COMPUTERS & SECURITY, 2017, 69 : 142 - 154
  • [5] Modeling Community Health with Areal Data: Bayesian Inference with Survey Standard Errors and Spatial Structure
    Donegan, Connor
    Chun, Yongwan
    Griffith, Daniel A.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (13)
  • [6] Bayesian variable and link determination for generalised linear models
    Ntzoufras, I
    Dellaportas, P
    Forster, JJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 111 (1-2) : 165 - 180
  • [7] APPROXIMATE BAYESIAN INFERENCE FOR GEOSTATISTICAL GENERALISED LINEAR MODELS
    Evangelou, Evangelos
    [J]. FOUNDATIONS OF DATA SCIENCE, 2019, 1 (01): : 39 - 60
  • [8] BAYESIAN MODELS FOR DETECTING DIFFERENCE BOUNDARIES IN AREAL DATA
    Li, Pei
    Banerjee, Sudipto
    Hanson, Timothy A.
    McBean, Alexander M.
    [J]. STATISTICA SINICA, 2015, 25 (01) : 385 - 402
  • [9] A flexible Bayesian hierarchical quantile spatial model for areal data
    Fernandez, Rafael Cabral
    Goncalves, Kelly Cristina Mota
    de Morais Pereira, Joao Batista
    [J]. STATISTICAL MODELLING, 2023,
  • [10] Modelling the effects of air pollution on health using Bayesian dynamic generalised linear models
    Lee, Duncan
    Shaddick, Gavin
    [J]. ENVIRONMETRICS, 2008, 19 (08) : 785 - 804