Bayesian variable and link determination for generalised linear models

被引:57
|
作者
Ntzoufras, I
Dellaportas, P
Forster, JJ
机构
[1] Athens Univ Econ & Business, Dept Stat, Athens 10434, Greece
[2] Univ Southampton, Dept Math, Southampton SO9 5NH, Hants, England
关键词
logistic regression; Markov chain Monte-Carlo; reversible jump;
D O I
10.1016/S0378-3758(02)00298-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we describe full Bayesian inference for generalised linear models where uncertainty exists about the structure of the linear predictor, the linear parameters and the link function. Choice of suitable prior distributions is discussed in detail and we propose an efficient reversible jump Markov chain Monte-Carlo algorithm for calculating posterior summaries. We illustrate our method with two data examples. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [1] Adaptive MCMC for Bayesian Variable Selection in Generalised Linear Models and Survival Models
    Liang, Xitong
    Livingstone, Samuel
    Griffin, Jim
    [J]. ENTROPY, 2023, 25 (09)
  • [2] Default Bayesian model determination methods for generalised linear mixed models
    Overstall, Antony M.
    Forster, Jonathan J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3269 - 3288
  • [3] APPROXIMATE BAYESIAN INFERENCE FOR GEOSTATISTICAL GENERALISED LINEAR MODELS
    Evangelou, Evangelos
    [J]. FOUNDATIONS OF DATA SCIENCE, 2019, 1 (01): : 39 - 60
  • [4] Approximate inferences for Bayesian hierarchical generalised linear regression models
    Berman, Brandon
    Johnson, Wesley O.
    Shen, Weining
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 163 - 203
  • [5] Bayesian structured variable selection in linear regression models
    Wang, Min
    Sun, Xiaoqian
    Lu, Tao
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (01) : 205 - 229
  • [6] Bayesian structured variable selection in linear regression models
    Min Wang
    Xiaoqian Sun
    Tao Lu
    [J]. Computational Statistics, 2015, 30 : 205 - 229
  • [7] Fast and approximate exhaustive variable selection for generalised linear models with APES
    Wang, Kevin Y. X.
    Tarr, Garth
    Yang, Jean Y. H.
    Mueller, Samuel
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (04) : 445 - 465
  • [8] Reversible jump methods for generalised linear models and generalised linear mixed models
    Forster, Jonathan J.
    Gill, Roger C.
    Overstall, Antony M.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 107 - 120
  • [9] Reversible jump methods for generalised linear models and generalised linear mixed models
    Jonathan J. Forster
    Roger C. Gill
    Antony M. Overstall
    [J]. Statistics and Computing, 2012, 22 : 107 - 120
  • [10] Bayesian optimal designs for efficient estimation of the optimum point with generalised linear models
    Li, Guilin
    Ng, Szu Hui
    Tan, Matthias Hwai-yong
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2020, 17 (01): : 89 - 107