APPROXIMATE BAYESIAN INFERENCE FOR GEOSTATISTICAL GENERALISED LINEAR MODELS

被引:0
|
作者
Evangelou, Evangelos [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
来源
FOUNDATIONS OF DATA SCIENCE | 2019年 / 1卷 / 01期
关键词
Disease mapping; full-scale approximation; generalised linear spatial; model; geostatistics; integrated nested Laplace approximation; LAPLACE APPROXIMATION; PREDICTION; LIKELIHOOD;
D O I
10.3934/fods.2019002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to bring together recent developments in Bayesian generalised linear mixed models and geostatistics. We focus on approximate methods on both areas. A technique known as full-scale approximation, proposed by Sang and Huang (2012) for improving the computational drawbacks of large geostatistical data, is incorporated into the INLA methodology, used for approximate Bayesian inference. We also discuss how INLA can be used for approximating the posterior distribution of transformations of parameters, useful for practical applications. Issues regarding the choice of the parameters of the approximation such as the knots and taper range are also addressed. Emphasis is given in applications in the context of disease mapping by illustrating the methodology for modelling the loa loa prevalence in Cameroon and malaria in the Gambia.
引用
收藏
页码:39 / 60
页数:22
相关论文
共 50 条
  • [1] Approximate inferences for Bayesian hierarchical generalised linear regression models
    Berman, Brandon
    Johnson, Wesley O.
    Shen, Weining
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 163 - 203
  • [2] Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models
    Eidsvik, Jo
    Martino, Sara
    Rue, Havard
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) : 1 - 22
  • [3] Bayesian Multimodel Inference for Geostatistical Regression Models
    Johnson, Devin S.
    Hoeting, Jennifer A.
    [J]. PLOS ONE, 2011, 6 (11):
  • [4] Sparse linear models: Variational approximate inference and Bayesian experimental design
    Seeger, Matthias W.
    [J]. INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2009 (IW-SMI 2009), 2009, 197
  • [5] Approximate Bayesian Inference for Survival Models
    Martino, Sara
    Akerkar, Rupali
    Rue, Havard
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (03) : 514 - 528
  • [6] Approximate Bayesian inference for mixture cure models
    Lazaro, E.
    Armero, C.
    Gomez-Rubio, V
    [J]. TEST, 2020, 29 (03) : 750 - 767
  • [7] Approximate Bayesian inference for mixture cure models
    E. Lázaro
    C. Armero
    V. Gómez-Rubio
    [J]. TEST, 2020, 29 : 750 - 767
  • [8] Approximate Bayesian inference for spatial econometrics models
    Bivand, Roger S.
    Gomez-Rubio, Virgilio
    Rue, Havard
    [J]. SPATIAL STATISTICS, 2014, 9 : 146 - 165
  • [9] Approximate Bayesian Inference in Semiparametric Copula Models
    Grazian, Clara
    Liseo, Brunero
    [J]. BAYESIAN ANALYSIS, 2017, 12 (04): : 991 - 1016
  • [10] Bayesian estimation and inference for generalised partial linear models using shape-restricted splines
    Meyer, Mary C.
    Hackstadt, Amber J.
    Hoeting, Jennifer A.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (04) : 867 - 884