APPROXIMATE BAYESIAN INFERENCE FOR GEOSTATISTICAL GENERALISED LINEAR MODELS

被引:0
|
作者
Evangelou, Evangelos [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
来源
FOUNDATIONS OF DATA SCIENCE | 2019年 / 1卷 / 01期
关键词
Disease mapping; full-scale approximation; generalised linear spatial; model; geostatistics; integrated nested Laplace approximation; LAPLACE APPROXIMATION; PREDICTION; LIKELIHOOD;
D O I
10.3934/fods.2019002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to bring together recent developments in Bayesian generalised linear mixed models and geostatistics. We focus on approximate methods on both areas. A technique known as full-scale approximation, proposed by Sang and Huang (2012) for improving the computational drawbacks of large geostatistical data, is incorporated into the INLA methodology, used for approximate Bayesian inference. We also discuss how INLA can be used for approximating the posterior distribution of transformations of parameters, useful for practical applications. Issues regarding the choice of the parameters of the approximation such as the knots and taper range are also addressed. Emphasis is given in applications in the context of disease mapping by illustrating the methodology for modelling the loa loa prevalence in Cameroon and malaria in the Gambia.
引用
收藏
页码:39 / 60
页数:22
相关论文
共 50 条
  • [31] A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation
    Kypraios, Theodore
    Neal, Peter
    Prangle, Dennis
    [J]. MATHEMATICAL BIOSCIENCES, 2017, 287 : 42 - 53
  • [32] Approximate Bayesian inference for quantiles
    Dunson, DB
    Taylor, JA
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (03) : 385 - 400
  • [33] Robust approximate Bayesian inference
    Ruli, Erlis
    Sartori, Nicola
    Ventura, Laura
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 10 - 22
  • [34] Mapping depth to Pleistocene sand with Bayesian generalized linear geostatistical models
    Steinbuch, Luc
    Brus, Dick J.
    Heuvelink, Gerard B. M.
    [J]. EUROPEAN JOURNAL OF SOIL SCIENCE, 2022, 73 (01)
  • [35] Adaptive MCMC for Bayesian Variable Selection in Generalised Linear Models and Survival Models
    Liang, Xitong
    Livingstone, Samuel
    Griffin, Jim
    [J]. ENTROPY, 2023, 25 (09)
  • [36] Fast and approximate exhaustive variable selection for generalised linear models with APES
    Wang, Kevin Y. X.
    Tarr, Garth
    Yang, Jean Y. H.
    Mueller, Samuel
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (04) : 445 - 465
  • [37] Approximate Bayes factors and accounting for model uncertainty in generalised linear models
    Raftery, AE
    [J]. BIOMETRIKA, 1996, 83 (02) : 251 - 266
  • [38] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [39] Variational Bayesian inference of linear state space models
    Pan, Chuanchao
    Wang, Jingzhuo
    Dong, Zijian
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 8531 - 8534