Areal prediction of survey data using Bayesian spatial generalised linear models

被引:2
|
作者
Bakar, K. Shuvo [1 ,2 ]
Jin, Huidong [1 ]
机构
[1] Commonwealth Sci & Ind Res Org CSIRO, Data61, Canberra, ACT, Australia
[2] Australian Natl Univ, ANU Ctr Social Res & Methods, Canberra, ACT, Australia
关键词
Bayesian inference; areal prediction; survey data; VARIABLE SELECTION;
D O I
10.1080/03610918.2018.1530787
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The conditional autoregressive approach is popular to analyse data with geocoded boundary. However, spatial prediction is often challenging when observed data are sparse. It becomes more challenging in predicting areal units with different areal boundaries. Hence, this paper develops a spatial generalised linear model for spatial predictions using data from spatially misaligned sparse locations. A spatial basis function associated with the conditional autoregressive models and the kriging method is considered. The proposed model demonstrates its better predictive performance through a simulation study and then is applied to understand the spatial pattern of undecided voting preferences in Australia.
引用
收藏
页码:2963 / 2978
页数:16
相关论文
共 50 条
  • [21] Spatial models for point and areal data using Markov random fields on a fine grid
    Paciorek, Christopher J.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 946 - 972
  • [22] ngspatial: A Package for Fitting the Centered Autologistic and Sparse Spatial Generalized Linear Mixed Models for Areal Data
    Hughes, John
    [J]. R JOURNAL, 2014, 6 (02): : 81 - 95
  • [23] A comparison of generalised linear models and compositional models for ordered categorical data
    Vencalek, Ondrej
    Hron, Karel
    Filzmoser, Peter
    [J]. STATISTICAL MODELLING, 2020, 20 (03) : 249 - 273
  • [24] Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data
    Perez-Rodriguez, Paulino
    Flores-Galarza, Samuel
    Vaquera-Huerta, Humberto
    del Valle-Paniagua, David Hebert
    Montesinos-Lopez, Osval A.
    Crossa, Jose
    [J]. PLANT GENOME, 2020, 13 (02):
  • [25] Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models
    Gerber, Lorian
    Furrer, Reinhard
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (CS1): : 1 - 32
  • [26] Bayesian optimal designs for efficient estimation of the optimum point with generalised linear models
    Li, Guilin
    Ng, Szu Hui
    Tan, Matthias Hwai-yong
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2020, 17 (01): : 89 - 107
  • [27] Spatial prediction models for mining spatial data
    Hu, Caiping
    Qin, Xiaolin
    Zhang, Jun
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON INTEGRATION TECHNOLOGY, PROCEEDINGS, 2007, : 369 - +
  • [28] Modelling Frontier Mortality Using Bayesian Generalised Additive Models
    Hilton, Jason
    Dodd, Erengul
    Forster, Jonathan J.
    Smith, Peter W. F.
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2021, 37 (03) : 569 - 589
  • [29] Assessment of generalised Bayesian structural equation models for continuous and binary data
    Vamvourellis, Konstantinos
    Kalogeropoulos, Konstantinos
    Moustaki, Irini
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2023, 76 (03): : 559 - 584
  • [30] Model selection via Bayesian information capacity designs for generalised linear models
    Woods, David C.
    McGree, James M.
    Lewis, Susan M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 226 - 238