Encoder-decoder with densely convolutional networks for monocular depth estimation

被引:3
|
作者
Chen, Songnan [1 ,2 ,3 ]
Tang, Mengxia [1 ,3 ]
Kan, Jiangming [1 ,3 ]
机构
[1] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[2] Xinyang Coll Agr & Forestry, Sch Informat Engn, Xinyang 464000, Henan, Peoples R China
[3] BFU, State Forestry Adm Forestry Equipment & Automat, Key Lab, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSOR;
D O I
10.1364/JOSAA.36.001709
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an encoder-decoder with densely convolutional networks model to recover the depth information froma single RGB image without the need for depth sensors. The encoder part serves to extract the most representative information from the original data through a series of convolution operations and to reduce the resolution of the spatial input feature. We use the decoder section to produce an upsampling structure that improves the output resolution. Our model is trained from scratch, without any special tuning process, and uses a new optimization function to adaptively learn the rate. We demonstrate the effectiveness of the method by evaluating both indoor and outdoor scenes, and the experimental results show that our proposed approach is more accurate than competing methods. (C) 2019 Optical Society of America
引用
收藏
页码:1709 / 1718
页数:10
相关论文
共 50 条
  • [31] DOM Refinement with neural Encoder-Decoder Networks
    Metzger, Nando
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2020, 88 (3-4): : 362 - 363
  • [32] Adversarial Signal Denoising with Encoder-Decoder Networks
    Casas, Leslie
    Klimmek, Attila
    Navab, Nassir
    Belagiannis, Vasileios
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1467 - 1471
  • [33] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    [J]. MEDICAL HYPOTHESES, 2020, 134
  • [34] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [35] MEDA: Multi-output Encoder-Decoder for Spatial Attention in Convolutional Neural Networks
    Li, Huayu
    Razi, Abolfazl
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 2087 - 2091
  • [36] Timber Tracing with Multimodal Encoder-Decoder Networks
    Zolotarev, Fedor
    Eerola, Tuomas
    Lensu, Lasse
    Kalviainen, Heikki
    Haario, Heikki
    Heikkinen, Jere
    Kauppi, Tomi
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 342 - 353
  • [37] Attentive encoder-decoder networks for crowd counting
    Liu, Xuhui
    Hu, Yutao
    Zhang, Baochang
    Zhen, Xiantong
    Luo, Xiaoyan
    Cao, Xianbin
    [J]. NEUROCOMPUTING, 2022, 490 : 246 - 257
  • [38] Visualization of Convolutional Neural Networks for Monocular Depth Estimation
    Hu, Junjie
    Zhang, Yan
    Okatani, Takayuki
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3868 - 3877
  • [39] On Mining Conditions using Encoder-decoder Networks
    Gallego, Fernando O.
    Corchuelo, Rafael
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 624 - 630
  • [40] Deep Convolutional Symmetric Encoder-Decoder Neural Networks to Predict Students' Visual Attention
    Hachaj, Tomasz
    Stolinska, Anna
    Andrzejewska, Magdalena
    Czerski, Piotr
    [J]. SYMMETRY-BASEL, 2021, 13 (12):