Encoder-decoder with densely convolutional networks for monocular depth estimation

被引:3
|
作者
Chen, Songnan [1 ,2 ,3 ]
Tang, Mengxia [1 ,3 ]
Kan, Jiangming [1 ,3 ]
机构
[1] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[2] Xinyang Coll Agr & Forestry, Sch Informat Engn, Xinyang 464000, Henan, Peoples R China
[3] BFU, State Forestry Adm Forestry Equipment & Automat, Key Lab, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSOR;
D O I
10.1364/JOSAA.36.001709
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an encoder-decoder with densely convolutional networks model to recover the depth information froma single RGB image without the need for depth sensors. The encoder part serves to extract the most representative information from the original data through a series of convolution operations and to reduce the resolution of the spatial input feature. We use the decoder section to produce an upsampling structure that improves the output resolution. Our model is trained from scratch, without any special tuning process, and uses a new optimization function to adaptively learn the rate. We demonstrate the effectiveness of the method by evaluating both indoor and outdoor scenes, and the experimental results show that our proposed approach is more accurate than competing methods. (C) 2019 Optical Society of America
引用
收藏
页码:1709 / 1718
页数:10
相关论文
共 50 条
  • [21] Detection of black box signal based on encoder-decoder fully convolutional networks
    Ji, Huazhong
    Zhou, Jie
    Pan, Xiang
    [J]. GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [22] Optimizing the Hyperparameters of Fully Convolutional Encoder-Decoder Networks for SAR Image Segmentation
    Liu, Yuanyue
    Zhao, Jin
    Fan, Jianchao
    Wang, Jun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [23] Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification
    Zhu, Yinhao
    Zabaras, Nicholas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 415 - 447
  • [24] Encoder-Decoder Structure With the Feature Pyramid for Depth Estimation From a Single Image
    Tang, Mengxia
    Chen, Songnan
    Dong, Ruifang
    Kan, Jiangming
    [J]. IEEE ACCESS, 2021, 9 : 22640 - 22650
  • [25] Recurrent Encoder-Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation
    Capobianco, Samuele
    Forti, Nicola
    Millefiori, Leonardo Maria
    Braca, Paolo
    Willett, Peter
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 2554 - 2565
  • [26] SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings
    Papa, Lorenzo
    Alati, Edoardo
    Russo, Paolo
    Amerini, Irene
    [J]. IEEE Access, 2022, 10 : 44881 - 44890
  • [27] SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings
    Papa, Lorenzo
    Alati, Edoardo
    Russo, Paolo
    Amerini, Irene
    [J]. IEEE ACCESS, 2022, 10 : 44881 - 44890
  • [28] Deep Convolutional Encoder-Decoder for Myelin and Axon Segmentation
    Mesbah, Rassoul
    McCane, Brendan
    Mills, Steven
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 226 - 231
  • [29] Using Convolutional Encoder-Decoder for Document Image Binarization
    Peng, Xujun
    Cao, Huaigu
    Natarajan, Prem
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 708 - 713
  • [30] SDDS-Net: Space and Depth Encoder-Decoder Convolutional Neural Networks for Real-Time Semantic Segmentation
    Ibrahem, Hatem
    Salem, Ahmed
    Kang, Hyun-Soo
    [J]. IEEE ACCESS, 2023, 11 : 119362 - 119372