Wirtinger-type integral inequalities for interval-valued functions

被引:9
|
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [21] Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings
    Khan, Muhammad Bilal
    Macias-Diaz, Jorge E.
    Soliman, Mohamed S.
    Noor, Muhammad Aslam
    AXIOMS, 2022, 11 (11)
  • [22] Hermite-Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators
    Srivastava, Hari Mohan
    Sahoo, Soubhagya Kumar
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Kodamasingh, Bibhakar
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [23] Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    AIMS MATHEMATICS, 2022, 7 (06): : 10454 - 10482
  • [24] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Chalco-Cano, Y.
    Lodwick, W. A.
    Condori-Equice, W.
    SOFT COMPUTING, 2015, 19 (11) : 3293 - 3300
  • [25] Fractional Hermite-Hadamard type inequalities for interval-valued functions
    Liu, Xuelong
    Ye, Gouju
    Zhao, Dafang
    Liu, Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [26] QUANTUM HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    Torres, Delfim F. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 246 - 265
  • [27] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Y. Chalco-Cano
    W. A. Lodwick
    W. Condori-Equice
    Soft Computing, 2015, 19 : 3293 - 3300
  • [28] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [29] On Properties of the Choquet Integral of Interval-Valued Functions
    Jang, Lee-Chae
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [30] ON RSU INTEGRAL OF INTERVAL-VALUED FUNCTIONS AND FUZZY-VALUED FUNCTIONS
    WU, CX
    LIU, HS
    FUZZY SETS AND SYSTEMS, 1993, 55 (01) : 93 - 106