Ostrowski type inequalities and applications in numerical integration for interval-valued functions

被引:0
|
作者
Y. Chalco-Cano
W. A. Lodwick
W. Condori-Equice
机构
[1] Universidad de Tarapacá,Instituto de Alta Investigación
[2] University of Colorado,Department of Mathematical and Statistical Sciences
[3] Universidad de San Andrés,undefined
来源
Soft Computing | 2015年 / 19卷
关键词
Ostrowski type inequalities; Interval-valued functions ; -Differentiability and integrability of interval-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is devoted to obtaining new Ostrowski type inequalities for interval-valued functions using the generalized Hukuhara derivative for interval-valued functions which is the concept more general of derivative for interval-valued functions. As an application, we obtain an error estimation to quadrature rules for interval-valued functions.
引用
收藏
页码:3293 / 3300
页数:7
相关论文
共 50 条
  • [1] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Chalco-Cano, Y.
    Lodwick, W. A.
    Condori-Equice, W.
    [J]. SOFT COMPUTING, 2015, 19 (11) : 3293 - 3300
  • [2] Ostrowski and Cebysev type inequalities for interval-valued functions and applications
    Guo, Jing
    Zhu, Xianjun
    Li, Wenfeng
    Li, Hui
    [J]. PLOS ONE, 2023, 18 (09):
  • [3] An Ostrowski type inequality for interval-valued functions
    Flores-Franulic, Arturo
    Chalco-Cano, Yurilev
    Roman-Flores, Heriberto
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1459 - 1462
  • [4] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472
  • [5] Fractional Ostrowski Type Inequalities for Interval Valued Functions
    Budak, Huseyin
    Kashuri, Artion
    Butt, Saad Ihsan
    [J]. FILOMAT, 2022, 36 (08) : 2531 - 2540
  • [6] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    [J]. FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [7] Opial-type inequalities for interval-valued functions
    Costa, T. M.
    Roman-Flores, H.
    Chalco-Cano, Y.
    [J]. FUZZY SETS AND SYSTEMS, 2019, 358 : 48 - 63
  • [8] DISCRETE OPIAL TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Zhao, Dafang
    You, Xuexiao
    Torres, Delfim f. m.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (04): : 811 - 826
  • [9] On Gronwall type inequalities for interval-valued functions on time scales
    Awais Younus
    Muhammad Asif
    Khurram Farhad
    [J]. Journal of Inequalities and Applications, 2015
  • [10] Wirtinger-type integral inequalities for interval-valued functions
    Costa, T. M.
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. FUZZY SETS AND SYSTEMS, 2020, 396 : 102 - 114