Wirtinger-type integral inequalities for interval-valued functions

被引:9
|
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [1] Some integral inequalities for interval-valued functions
    Roman-Flores, H.
    Chalco-Cano, Y.
    Lodwick, W. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1306 - 1318
  • [2] Some integral inequalities for interval-valued functions
    H. Román-Flores
    Y. Chalco-Cano
    W. A. Lodwick
    Computational and Applied Mathematics, 2018, 37 : 1306 - 1318
  • [3] Multi-dimensional integral inequalities of the Wirtinger-type
    Cheung, WS
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (04): : 481 - 489
  • [4] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [5] DISCRETE WIRTINGER-TYPE INEQUALITIES
    FINK, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A142 - &
  • [7] DISCRETE OPIAL TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Zhao, Dafang
    You, Xuexiao
    Torres, Delfim f. m.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (04): : 811 - 826
  • [8] Opial-type inequalities for interval-valued functions
    Costa, T. M.
    Roman-Flores, H.
    Chalco-Cano, Y.
    FUZZY SETS AND SYSTEMS, 2019, 358 : 48 - 63
  • [9] A note on Wirtinger-type integral inequalities for time-delay systems
    Gyurkovics, Eva
    AUTOMATICA, 2015, 61 : 44 - 46
  • [10] Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions
    Khan, Muhammad Bilal
    Mohammed, Pshtiwan Othman
    Noor, Muhammad Aslam
    Abualnaja, Khadijah M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6552 - 6580