Wirtinger-type integral inequalities for interval-valued functions

被引:9
|
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [41] Some Fejer-Type Inequalities for Generalized Interval-Valued Convex Functions
    Khan, Muhammad Bilal
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    MATHEMATICS, 2022, 10 (20)
  • [42] Some Fractional Hermite-Hadamard Type Inequalities for Interval-Valued Functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    MATHEMATICS, 2020, 8 (04)
  • [43] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472
  • [45] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    Costa, T. M.
    Silva, G. N.
    Chalco-Cano, Y.
    Roman-Flores, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [46] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    T. M. Costa
    G. N. Silva
    Y. Chalco-Cano
    H. Román-Flores
    Computational and Applied Mathematics, 2019, 38
  • [47] On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities
    Sha, Zehao
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    AIMS MATHEMATICS, 2021, 6 (02): : 1276 - 1295
  • [48] INTEGRAL INEQUALITIES OF THE WIRTINGER TYPE
    BEESACK, PR
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (03) : 477 - 498
  • [49] LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Abdeljawad, Thabet
    Mousa, Abd Allah A.
    Abdalla, Bahaaeldin
    Alghamdi, Safar M.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [50] Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings
    Khan, Muhammad Bilal
    Treanta, Savin
    Soliman, Mohamed S.
    Nonlaopon, Kamsing
    Zaini, Hatim Ghazi
    MATHEMATICS, 2022, 10 (04)