Dirichlet Variational Autoencoder

被引:42
|
作者
Joo, Weonyoung [1 ]
Lee, Wonsung [2 ]
Park, Sungrae [3 ]
Moon, Il-Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Daejeon 34141, South Korea
[2] SK Telecom, AI Technol Unit, Seoul 04539, South Korea
[3] NAVER Corp, Clova AI Res, Gyeonggi Do 13561, South Korea
基金
新加坡国家研究基金会;
关键词
Representation learning; Variational autoencoder; Deep generative model; Multi-modal latent representation; Component collapse;
D O I
10.1016/j.patcog.2020.107514
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior. To infer the parameters of DirVAE, we utilize the stochastic gradient method by approximating the inverse cumulative distribution function of the Gamma distribution, which is a component of the Dirichlet distribution. This approximation on a new prior led an investigation on the component collapsing, and DirVAE revealed that the component collapsing originates from two problem sources: decoder weight collapsing and latent value collapsing. The experimental results show that 1) DirVAE generates the result with the best log-likelihood compared to the baselines; 2) DirVAE produces more interpretable latent values with no collapsing issues which the baselines suffer from; 3) the latent representation from DirVAE achieves the best classification accuracy in the (semi-)supervised classification tasks on MNIST, OMNIGLOT, COIL-20, SVHN, and CIFAR-10 compared to the baseline VAEs; and 4) the DirVAE augmented topic models show better performances in most cases. (C) 2020 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Variational AutoEncoder for synthetic insurance data
    Jamotton, Charlotte
    Hainaut, Donatien
    Intelligent Systems with Applications, 2024, 24
  • [32] Variational autoencoder for the identification of piecewise models
    Mejari, Manas
    Forgione, Marco
    Piga, Dario
    IFAC PAPERSONLINE, 2023, 56 (02): : 4055 - 4060
  • [33] Hybrid Variational Autoencoder for Recommender Systems
    Zhang, Hangbin
    Wong, Raymond K.
    Chu, Victor W.
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [34] A QUATERNION-VALUED VARIATIONAL AUTOENCODER
    Grassucci, Eleonora
    Comminiello, Danilo
    Uncini, Aurelio
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3310 - 3314
  • [35] NVAE: A Deep Hierarchical Variational Autoencoder
    Vahdat, Arash
    Kautz, Jan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [36] Contrastively Disentangled Sequential Variational Autoencoder
    Bai, Junwen
    Wang, Weiran
    Gomes, Carla
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Combining an Autoencoder and a Variational Autoencoder for Explaining the Machine Learning Model Predictions
    Utkin, Lev
    Drobintsev, Pavel
    Kovalev, Maxim
    Konstantinov, Andrei
    PROCEEDINGS OF THE 28TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION FRUCT, 2021, : 488 - 494
  • [38] A RECURRENT VARIATIONAL AUTOENCODER FOR SPEECH ENHANCEMENT
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Girin, Laurent
    Horaud, Radu
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 371 - 375
  • [39] Nearest Neighbours Graph Variational AutoEncoder
    Arsini, Lorenzo
    Caccia, Barbara
    Ciardiello, Andrea
    Giagu, Stefano
    Mancini Terracciano, Carlo
    ALGORITHMS, 2023, 16 (03)
  • [40] Federated Variational Autoencoder for Collaborative Filtering
    Polato, Mirko
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,