Combining an Autoencoder and a Variational Autoencoder for Explaining the Machine Learning Model Predictions

被引:0
|
作者
Utkin, Lev [1 ]
Drobintsev, Pavel [1 ]
Kovalev, Maxim [1 ]
Konstantinov, Andrei [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A method for explaining a deep learning model prediction is proposed. It uses a combination of the standard autoencoder and the variational autoencoder. The standard autoencoder is exploited to reconstruct original images and to produce hidden representation vectors. The variational autoencoder is trained to transform the deep learning model outputs (embedding vectors) into the hidden representation vectors of the standard autoencoder. In explaining or testing phase, the variational autoencoder produces a set of vectors based on the explained image embedding. Then the trained decoder part of the standard autoencoder reconstructs a set of images which form a heatmap explaining the original explained image. In fact, the variational autoencoder plays a role of the perturbation technique of images. Numerical experiments with the well-known datasets MNIST and CIFARIO illustrate the propose method.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 50 条
  • [1] The Difference Learning of Hidden Layer between Autoencoder and Variational Autoencoder
    Xu, Qingyang
    Wu, Zhe
    Yang, Yiqin
    Zhang, Li
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4801 - 4804
  • [2] Machine Learning With Variational AutoEncoder for Imbalanced Datasets in Intrusion Detection
    Lin, Ying-Dar
    Liu, Zi-Qiang
    Hwang, Ren-Hung
    Van-Linh Nguyen
    Lin, Po-Ching
    Lai, Yuan-Cheng
    [J]. IEEE ACCESS, 2022, 10 : 15247 - 15260
  • [3] Machine Learning with Variational AutoEncoder for Imbalanced Datasets in Intrusion Detection
    Lin, Ying-Dar
    Liu, Zi-Qiang
    Hwang, Ren-Hung
    Nguyen, Van-Linh
    Lin, Po-Ching
    Lai, Yuan-Cheng
    [J]. IEEE Access, 2022, 10 : 15247 - 15260
  • [4] Learning Community Structure with Variational Autoencoder
    Choong, Jun Jin
    Liu, Xin
    Murata, Tsuyoshi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 69 - 78
  • [5] Generative autoencoder to prevent overregularization of variational autoencoder
    Ko, YoungMin
    Ko, SunWoo
    Kim, YoungSoo
    [J]. ETRI JOURNAL, 2024,
  • [6] Prognostics With Variational Autoencoder by Generative Adversarial Learning
    Huang, Yu
    Tang, Yufei
    VanZwieten, James
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (01) : 856 - 867
  • [7] VTAE: Variational Transformer Autoencoder With Manifolds Learning
    Shamsolmoali, Pourya
    Zareapoor, Masoumeh
    Zhou, Huiyu
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4486 - 4500
  • [8] Symmetric Variational Autoencoder and Connections to Adversarial Learning
    Chen, Liqun
    Dai, Shuyang
    Pu, Yunchen
    Zhou, Erjin
    Li, Chunyuan
    Su, Qinliang
    Chen, Changyou
    Carin, Lawrence
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [9] CONTINUAL LEARNING FOR ANOMALY DETECTION WITH VARIATIONAL AUTOENCODER
    Wiewel, Felix
    Yang, Bin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3837 - 3841
  • [10] Different Latent Variables Learning in Variational Autoencoder
    Xu, Qingyang
    Yang, Yiqin
    Wu, Zhe
    Zhang, Li
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 508 - 511