Dirichlet Variational Autoencoder

被引:42
|
作者
Joo, Weonyoung [1 ]
Lee, Wonsung [2 ]
Park, Sungrae [3 ]
Moon, Il-Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Daejeon 34141, South Korea
[2] SK Telecom, AI Technol Unit, Seoul 04539, South Korea
[3] NAVER Corp, Clova AI Res, Gyeonggi Do 13561, South Korea
基金
新加坡国家研究基金会;
关键词
Representation learning; Variational autoencoder; Deep generative model; Multi-modal latent representation; Component collapse;
D O I
10.1016/j.patcog.2020.107514
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior. To infer the parameters of DirVAE, we utilize the stochastic gradient method by approximating the inverse cumulative distribution function of the Gamma distribution, which is a component of the Dirichlet distribution. This approximation on a new prior led an investigation on the component collapsing, and DirVAE revealed that the component collapsing originates from two problem sources: decoder weight collapsing and latent value collapsing. The experimental results show that 1) DirVAE generates the result with the best log-likelihood compared to the baselines; 2) DirVAE produces more interpretable latent values with no collapsing issues which the baselines suffer from; 3) the latent representation from DirVAE achieves the best classification accuracy in the (semi-)supervised classification tasks on MNIST, OMNIGLOT, COIL-20, SVHN, and CIFAR-10 compared to the baseline VAEs; and 4) the DirVAE augmented topic models show better performances in most cases. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Binary Variational Autoencoder for Hashing
    Mena, Francisco
    Nanculef, Ricardo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019), 2019, 11896 : 131 - 141
  • [22] Coupled adversarial variational autoencoder
    Hou, Yingzhen
    Zhai, Junhai
    Chen, Jiankai
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 98
  • [23] Deep Clustering With Variational Autoencoder
    Lim, Kart-Leong
    Jiang, Xudong
    Yi, Chenyu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 231 - 235
  • [24] β-Variational autoencoder as an entanglement classifier
    Sa, Nahum
    Roditi, Itzhak
    PHYSICS LETTERS A, 2021, 417
  • [25] Adversarial Symmetric Variational Autoencoder
    Pu, Yunchen
    Wang, Weiyao
    Henao, Ricardo
    Chen, Liqun
    Gan, Zhe
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [26] VARIATIONAL AND HIERARCHICAL RECURRENT AUTOENCODER
    Chien, Jen-Tzung
    Wang, Chun-Wei
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3202 - 3206
  • [27] The Difference Learning of Hidden Layer between Autoencoder and Variational Autoencoder
    Xu, Qingyang
    Wu, Zhe
    Yang, Yiqin
    Zhang, Li
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4801 - 4804
  • [28] Personalized Arrhythmia Detection Based on Lightweight Autoencoder and Variational Autoencoder
    Zhong, Zhaoyi
    Sun, Le
    Subramani, Sudha
    DATABASES THEORY AND APPLICATIONS (ADC 2022), 2022, 13459 : 50 - 62
  • [29] The Dirichlet problem by variational methods
    Arendt, Wolfgang
    Daners, Daniel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 51 - 56
  • [30] Deep Feature Consistent Variational Autoencoder
    Hou, Xianxu
    Shen, Linlin
    Sun, Ke
    Qiu, Guoping
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1133 - 1141