Resonance problem of a class of singular quasilinear elliptic equations

被引:0
|
作者
Jia, Gao [1 ]
Li, Fanglan [2 ]
Ding, Zhonghai [3 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanghai Med Instrumentat Coll, Dept Basic Sci, Shanghai 200093, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
中国国家自然科学基金;
关键词
35J50; 35H30; 35B34; resonance problem; weighted Sobolev space; singular quasiliner elliptic equation; near-eigenvalue;
D O I
10.1080/00036811.2014.967231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the resonance problem of a class of singular quasilinear elliptic equations with respect to its higher near-eigenvalues. Under a generalized Landesman-Lazer condition, it is proved that the resonance problem admits at least one nontrivial solution in weighted Sobolev spaces. The proof is based upon applying the Galerkin-type technique, the Brouwer's fixed-point theorem and a compact embedding theorem of weighted Sobolev spaces by Shapiro.
引用
下载
收藏
页码:2095 / 2109
页数:15
相关论文
共 50 条