共 50 条
Resonance problem of a class of singular quasilinear elliptic equations
被引:0
|作者:
Jia, Gao
[1
]
Li, Fanglan
[2
]
Ding, Zhonghai
[3
]
机构:
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanghai Med Instrumentat Coll, Dept Basic Sci, Shanghai 200093, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金:
中国国家自然科学基金;
关键词:
35J50;
35H30;
35B34;
resonance problem;
weighted Sobolev space;
singular quasiliner elliptic equation;
near-eigenvalue;
D O I:
10.1080/00036811.2014.967231
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we study the resonance problem of a class of singular quasilinear elliptic equations with respect to its higher near-eigenvalues. Under a generalized Landesman-Lazer condition, it is proved that the resonance problem admits at least one nontrivial solution in weighted Sobolev spaces. The proof is based upon applying the Galerkin-type technique, the Brouwer's fixed-point theorem and a compact embedding theorem of weighted Sobolev spaces by Shapiro.
引用
下载
收藏
页码:2095 / 2109
页数:15
相关论文