Resonance problem of a class of singular quasilinear elliptic equations

被引:0
|
作者
Jia, Gao [1 ]
Li, Fanglan [2 ]
Ding, Zhonghai [3 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanghai Med Instrumentat Coll, Dept Basic Sci, Shanghai 200093, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
中国国家自然科学基金;
关键词
35J50; 35H30; 35B34; resonance problem; weighted Sobolev space; singular quasiliner elliptic equation; near-eigenvalue;
D O I
10.1080/00036811.2014.967231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the resonance problem of a class of singular quasilinear elliptic equations with respect to its higher near-eigenvalues. Under a generalized Landesman-Lazer condition, it is proved that the resonance problem admits at least one nontrivial solution in weighted Sobolev spaces. The proof is based upon applying the Galerkin-type technique, the Brouwer's fixed-point theorem and a compact embedding theorem of weighted Sobolev spaces by Shapiro.
引用
下载
收藏
页码:2095 / 2109
页数:15
相关论文
共 50 条
  • [31] THE EIGENVALUE PROBLEM FOR A SINGULAR QUASILINEAR ELLIPTIC EQUATION
    Xuan, Benjin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [32] Uniqueness of solution to a singular quasilinear elliptic problem
    Lair, AV
    Shaker, AW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) : 489 - 493
  • [33] Uniqueness of solution to a singular quasilinear elliptic problem
    Lair, Alan V.
    Shaker, Aihua W.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 28 (03): : 489 - 493
  • [34] DIRICHLETS PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS
    GILBERT, RP
    CHIACHUH.G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A143 - A143
  • [35] The Calderon problem for quasilinear elliptic equations
    Munoz, Claudio
    Uhlmann, Gunther
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1143 - 1166
  • [36] An Inverse Problem for Quasilinear Elliptic Equations
    Aliev, R. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (01): : 3 - 9
  • [37] On a jumping problem for quasilinear elliptic equations
    Annamaria Canino
    Mathematische Zeitschrift, 1997, 226 : 193 - 210
  • [38] On a jumping problem for quasilinear elliptic equations
    Canino, A
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (02) : 193 - 210
  • [39] Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry
    Corsato, Chiara
    De Coster, Colette
    Flora, Noemi
    Omari, Pierpaolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 : 9 - 23
  • [40] Dead cores and bursts for quasilinear singular elliptic equations
    Pucci, Patrizia
    Serrin, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) : 259 - 278