Spatiotemporal distribution of Landsat imagery of Europe using cloud cover-weighted metadata

被引:9
|
作者
Tolnaia, Marton [1 ,2 ]
Nagy, Janos Gyorgy [1 ]
Bako, Gabor [1 ,2 ]
机构
[1] Szent Istvan Univ, Inst Bot & Plant Ecophysiol, Godollo, Hungary
[2] Interspect Res Grp, Halasztelek, Hungary
来源
JOURNAL OF MAPS | 2016年 / 12卷 / 05期
关键词
Landsat; spatiotemporal; data supply; metadata; cloud cover; index;
D O I
10.1080/17445647.2015.1125308
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Landsat imagery is the most frequently used remotely sensed data in many fields related to the monitoring of the Earth's surface. As Landsat satellites have gathered data since 1972, lots of valuable information has been stored and can be derived from imagery over a long time interval. Of course, due to certain factors such as weather conditions and satellite-related technical issues, data collection cannot be consistent in time and space. Cloud coverage is the most obvious condition that determines the usability of a remotely sensed satellite images. For successful results, a rich data supply is essential. To explore the data supply of a certain study area, the Landsat metadata can be checked which is usually an involved process especially for a long time interval. Therefore, the visualisation of Landsat metadata can result in a faster work flow and successful study area selection. In this paper we present a cloud cover-weighted metadata map for the area of Europe.
引用
收藏
页码:1084 / 1088
页数:5
相关论文
共 50 条
  • [1] Determination of Land Cover using Landsat TM Imagery
    Genc, Levent
    Sacan, Melis
    Turhan, Hakan
    Asar, Burak
    [J]. JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2010, 16 (03): : 213 - 224
  • [2] AN ITERATIVE ALGORITHM FOR REMOVING THE EFFECT OF THIN CLOUD COVER FROM LANDSAT IMAGERY
    CHANDA, B
    MAJUMDER, DD
    [J]. MATHEMATICAL GEOLOGY, 1991, 23 (06): : 853 - 860
  • [3] Estimation of cirrus and stratus cloud heights using landsat imagery
    Inomata, Y
    Feind, RE
    Welch, RM
    [J]. JOURNAL OF APPLIED METEOROLOGY, 1996, 35 (03): : 483 - 502
  • [4] Thick Cloud Removal Under Land Cover Changes Using Multisource Satellite Imagery and a Spatiotemporal Attention Network
    Liu, Hao
    Huang, Bo
    Cai, Jiajun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Improved Land Cover Mapping Using Landsat 8 Thermal Imagery
    Al-doski, Jwan
    Mansor, Shattri B.
    San, H'ng Paik
    Khuzaimah, Zailani
    [J]. 10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [6] Separation of citrus plantations from forest cover using landsat imagery
    Ozdemir, I.
    Koch, B.
    Asan, U.
    Gross, C. -P.
    Hemphill, S.
    [J]. ALLGEMEINE FORST UND JAGDZEITUNG, 2007, 178 (11-12): : 208 - 212
  • [7] Crop and land cover classification in Iran using Landsat 7 imagery
    Akbari, M.
    Mamanpoush, A. R.
    Gieske, A.
    Miranzadeh, M.
    Torabi, M.
    Salemi, H. R.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (19) : 4117 - 4135
  • [8] Cloud detection in Landsat imagery for Antarctic region using multispectral thresholds
    Shao, Zhenfeng
    Hou, Jihu
    Jiang, Manman
    Zhou, Xiran
    [J]. REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V, 2014, 9259
  • [9] A new approach for estimating mangrove canopy cover using Landsat 8 imagery
    Abd-El Monsef, Hesham
    Smith, Scot E.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 135 : 183 - 194
  • [10] Detection of Cloud Cover in Satellite Imagery Using Semantic Segmentation
    Jaju, Sanay
    Sahu, Mohit
    Surana, Akshat
    Mishra, Kanak
    Karandikar, Aarti
    Agrawal, Avinash
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (05): : 1064 - 1070