Spatiotemporal distribution of Landsat imagery of Europe using cloud cover-weighted metadata

被引:9
|
作者
Tolnaia, Marton [1 ,2 ]
Nagy, Janos Gyorgy [1 ]
Bako, Gabor [1 ,2 ]
机构
[1] Szent Istvan Univ, Inst Bot & Plant Ecophysiol, Godollo, Hungary
[2] Interspect Res Grp, Halasztelek, Hungary
来源
JOURNAL OF MAPS | 2016年 / 12卷 / 05期
关键词
Landsat; spatiotemporal; data supply; metadata; cloud cover; index;
D O I
10.1080/17445647.2015.1125308
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Landsat imagery is the most frequently used remotely sensed data in many fields related to the monitoring of the Earth's surface. As Landsat satellites have gathered data since 1972, lots of valuable information has been stored and can be derived from imagery over a long time interval. Of course, due to certain factors such as weather conditions and satellite-related technical issues, data collection cannot be consistent in time and space. Cloud coverage is the most obvious condition that determines the usability of a remotely sensed satellite images. For successful results, a rich data supply is essential. To explore the data supply of a certain study area, the Landsat metadata can be checked which is usually an involved process especially for a long time interval. Therefore, the visualisation of Landsat metadata can result in a faster work flow and successful study area selection. In this paper we present a cloud cover-weighted metadata map for the area of Europe.
引用
收藏
页码:1084 / 1088
页数:5
相关论文
共 50 条
  • [31] Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery
    Kirui, K. B.
    Kairo, J. G.
    Bosire, J.
    Viergever, K. M.
    Rudra, S.
    Huxham, M.
    Briers, R. A.
    [J]. OCEAN & COASTAL MANAGEMENT, 2013, 83 : 19 - 24
  • [32] Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery
    Yin, Dameng
    Cao, Xin
    Chen, Xuehong
    Shao, Yijie
    Chen, Jin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (19) : 6529 - 6538
  • [33] Gobal Forest Cover Mapping using Landsat and Google Earth Engine cloud computing
    Zhang, Xiaomei
    Long, Tengfei
    He, Guojin
    Guo, Yantao
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [34] Land cover classification using Landsat TM imagery in the tropical highlands: the influence of anisotropic reflectance
    Colby, JD
    Keating, PL
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (08) : 1479 - 1500
  • [35] ANALYSIS OF LAND USE AND LAND COVER CHANGES IN THE COASTAL AREA OF BANGLADESH USING LANDSAT IMAGERY
    Islam, M. Rafiqul
    Miah, M. Giashuddin
    Inoue, Yoshio
    [J]. LAND DEGRADATION & DEVELOPMENT, 2016, 27 (04) : 899 - 909
  • [36] Assessment of Land Cover Changes in the Hinterland of Barranquilla (Colombia) Using Landsat Imagery and Logistic Regression
    Schubert, Henry
    Caballero Calvo, Andres
    Rauchecker, Markus
    Rojas-Zamora, Oscar
    Brokamp, Grischa
    Schuett, Brigitta
    [J]. LAND, 2018, 7 (04)
  • [37] Land-cover classification using Radarsat and Landsat imagery for St. Louis, Missouri
    Huang, Heng
    Legarsky, Justin
    Othman, Maslina
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (01): : 37 - 43
  • [38] Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery
    Han, Pengpeng
    Chen, Jinsong
    Han, Yu
    Yi, Lin
    Zhang, Yannan
    Jiang, Xiaoli
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) : 2189 - 2206
  • [39] Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
    Xian, George
    Homer, Collin
    Fry, Joyce
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (06) : 1133 - 1147
  • [40] Analysis of the Spatiotemporal Urban Expansion of the Rome Coastline through GEE and RF Algorithm, Using Landsat Imagery
    Lodato, Francesco
    Colonna, Nicola
    Pennazza, Giorgio
    Pratico, Salvatore
    Santonico, Marco
    Vollero, Luca
    Pollino, Maurizio
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (04)