A new approach for estimating mangrove canopy cover using Landsat 8 imagery

被引:26
|
作者
Abd-El Monsef, Hesham [1 ]
Smith, Scot E. [2 ]
机构
[1] Suez Canal Univ, Dept Geol, Fac Sci, Ismailia, Egypt
[2] Univ Florida, Geomat Program, Gainesville, FL USA
关键词
Landsat; 8; Mangrove; Normalized Difference Vegetation Index; Infrared Index; Leaf Area Index; Green Atmospherically Resistant Index; Optimized Soil Adjusted Vegetation Index; Normalized Difference Built-up Index; Normalized Difference Water Index; VEGETATION; INDEX; SOIL;
D O I
10.1016/j.compag.2017.02.007
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Due to background reflectance, it is difficult to accurately map sparse canopy vegetation using moderate resolution satellite imagery. Information contained in virtually all the pixels is a mix of leaf vegetation, soil, branches and shadow. Presented in this paper is a novel approach to improving the accuracy of mapping mangrove canopy using Landsat 8 imagery by incorporating seven indices: Normalized Difference Vegetation Index, Infrared Index, Leaf Area Index, Green Atmospherically Resistant Index, Optimized Soil Adjusted Vegetation Index, Normalized Difference Built-up Index and Normalized Difference Water Index. Results demonstrated that the accuracy of mapping mangrove can be significantly improved using this approach. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 50 条
  • [1] Canopy Cover Estimation in Lowland Forest in South Sumatera, Using LiDAR and Landsat 8 OLI imagery
    Saleh, Muhammad Buce
    Dewi, Rosima Wati
    Prasetyo, Lilik Budi
    Santi, Nitya Ade
    [J]. JURNAL MANAJEMEN HUTAN TROPIKA, 2021, 27 (01): : 50 - 58
  • [2] Linear mixture modeling approach for estimating cotton canopy ground cover using satellite multispectral imagery
    Maas, SJ
    [J]. REMOTE SENSING OF ENVIRONMENT, 2000, 72 (03) : 304 - 308
  • [3] Estimating ground cover in northern Australian rangelands using Landsat TM imagery
    Taube, CA
    [J]. PEOPLE AND RANGELANDS BUILDING THE FUTURE, VOLS 1 AND 2, 1999, : 757 - 758
  • [4] Improved Land Cover Mapping Using Landsat 8 Thermal Imagery
    Al-doski, Jwan
    Mansor, Shattri B.
    San, H'ng Paik
    Khuzaimah, Zailani
    [J]. 10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [5] Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery
    Kirui, K. B.
    Kairo, J. G.
    Bosire, J.
    Viergever, K. M.
    Rudra, S.
    Huxham, M.
    Briers, R. A.
    [J]. OCEAN & COASTAL MANAGEMENT, 2013, 83 : 19 - 24
  • [6] Mapping canopy cover for municipal forestry monitoring: Using free Landsat imagery and machine learning
    Bonney, Mitchell T.
    He, Yuhong
    Vogeler, Jody
    Conway, Tenley
    Kaye, Esther
    [J]. URBAN FORESTRY & URBAN GREENING, 2024, 100
  • [7] Estimating forest canopy cover dynamics in Valles Caldera National Preserve, New Mexico, using LiDAR and Landsat data
    Humagain, Kamal
    Portillo-Quintero, Carlos
    Cox, Robert D.
    Cain, James W., III
    [J]. APPLIED GEOGRAPHY, 2018, 99 : 120 - 132
  • [8] Mapping the Philippines' Mangrove Forests Using Landsat Imagery
    Long, Jordan B.
    Giri, Chandra
    [J]. SENSORS, 2011, 11 (03) : 2972 - 2981
  • [9] Mapping crop cover using multi-temporal Landsat 8 OLI imagery
    Sonobe, Rei
    Yamaya, Yuki
    Tani, Hiroshi
    Wang, Xiufeng
    Kobayashi, Nobuyuki
    Mochizuki, Kan-ichiro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (15) : 4348 - 4361
  • [10] Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods
    Halperin, James
    LeMay, Valerie
    Coops, Nicholas
    Verchot, Louis
    Marshall, Peter
    Lochhead, Kyle
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 179 : 170 - 182