Detection of Cloud Cover in Satellite Imagery Using Semantic Segmentation

被引:0
|
作者
Jaju, Sanay [1 ]
Sahu, Mohit [1 ]
Surana, Akshat [1 ]
Mishra, Kanak [1 ]
Karandikar, Aarti [1 ]
Agrawal, Avinash [1 ]
机构
[1] Shri Ramdeobaba Coll Engn & Management, Comp Sci & Engn Dept, Nagpur, Maharashtra, India
来源
关键词
Semantic Segmentation; Cloud Detection; Satellite Image; Object Detection; Deep Learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate detection of cloud cover is an important task in the field of Remote Sensing of the environment. Currently, a lot of development is going on in this field by using various methods. Some of the methods apply concepts of machine learning (ML) whereas some apply deep learning. Since the accuracy of ML being lower than deep learning, the latter is preferred. This paper also uses the method of deep learning to detect cloud cover using images of satellite. This paper proposes a modified U-Net based deep learning model for cloud cover detection in satellite images. The model proposed is not as accurate as the original model, but it compensates for it by reducing the time for learning. The accuracy of the model came out to be 89.73%.
引用
收藏
页码:1064 / 1070
页数:7
相关论文
共 50 条
  • [1] Semantic Segmentation for Ships Detection from Satellite Imagery
    Hordiiuk, Dariia
    Oliinyk, Ievgenii
    Hnatushenko, Volodymyr
    Maksymov, Kostiantyn
    [J]. 2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 454 - 457
  • [2] Wildfire Detection From Multisensor Satellite Imagery Using Deep Semantic Segmentation
    Rashkovetsky, Dmitry
    Mauracher, Florian
    Langer, Martin
    Schmitt, Michael
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7001 - 7016
  • [3] Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast
    Escrig, H.
    Batlles, F. J.
    Alonso, J.
    Baena, F. M.
    Bosch, J. L.
    Salbidegoitia, I. B.
    Burgaleta, J. I.
    [J]. ENERGY, 2013, 55 : 853 - 859
  • [4] ADU-Net: Semantic segmentation of satellite imagery for land cover classification
    Talha, Muhammad
    Bhatti, Farrukh A.
    Ghuffar, Sajid
    Zafar, Hamza
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 72 (05) : 1780 - 1788
  • [5] FILTERING TO REMOVE CLOUD COVER IN SATELLITE IMAGERY
    MITCHELL, OR
    DELP, EJ
    CHEN, PL
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1977, 15 (03): : 137 - 141
  • [6] Monitoring deforestation in Jordan using deep semantic segmentation with satellite imagery
    Alzu'bi, Ahmad
    Alsmadi, Lujain
    [J]. ECOLOGICAL INFORMATICS, 2022, 70
  • [7] SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY
    Sah, A. K.
    Sah, B. P.
    Honji, K.
    Kubo, N.
    Senthil, S.
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 335 - 340
  • [8] Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery
    Tzepkenlis, Anastasios
    Marthoglou, Konstantinos
    Grammalidis, Nikos
    [J]. REMOTE SENSING, 2023, 15 (08)
  • [9] INCORPORATING SPECTRAL UNMIXING IN SATELLITE IMAGERY SEMANTIC SEGMENTATION
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2449 - 2453
  • [10] CLOUD DETECTION IN SATELLITE IMAGERY USING GRAPHICS PROCESSING UNITS
    Bhangale, Ujwala M.
    Durbha, Surya S.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 270 - 273