Global well-posedness for the two-dimensional coupled chemotaxis-generalized Navier-Stokes system with logistic growth

被引:9
|
作者
Nie, Yao [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global well-posedness; Chemotaxis; Generalized Navier-Stokes; Logistic growth; WEAK SOLUTIONS; GUIDE;
D O I
10.1016/j.jde.2020.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate Cauchy problem for the two-dimensional incompressible chemotaxisNavier-Stokes equations with the lower fractional diffusion {partial derivative(t)n + u . del n - Delta n = -del . (n del c) + lambda n - mu n(2), partial derivative(t)c + u . del c - Delta c = -cn, partial derivative(t)u + u. del u + Lambda(2 alpha) u + del P = -n del phi, where Lambda := (-Delta)(1/2) and alpha is an element of [1/2, 1]. We obtain the global-in-time existence and uniqueness of weak solution to the equations for a class of large initial data by making use of the coupled structure of system and damping effect of the logistic source, and developing the L-4/3 (R-2) estimate for vorticity. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:5379 / 5433
页数:55
相关论文
共 50 条
  • [41] Well-posedness of the generalized Navier–Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    Applied Mathematics Letters, 2021, 121
  • [42] On the global well-posedness for the compressible Navier-Stokes equations with slip boundary condition
    Shibata, Yoshihiro
    Murata, Miho
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5761 - 5795
  • [43] Global well-posedness of the 1d compressible Navier-Stokes system with rough data
    Chen, Ke
    Ha, Ly Kim
    Hu, Ruilin
    Nguyen, Hung
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 425 - 453
  • [44] GLOBAL WELL-POSEDNESS OF AXISYMMETRIC NAVIER-STOKES EQUATIONS WITH ONE SLOW VARIABLE
    Peng, Weimin
    Zhou, Yi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3845 - 3856
  • [45] Notes on the Global Well-Posedness for the Maxwell-Navier-Stokes System
    Kang, Ensil
    Lee, Jihoon
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [46] On the global well-posedness for a multi-dimensional compressible Navier-Stokes-Poisson system
    Dong, Junting
    Wang, Zheng
    Xu, Fuyi
    APPLIED MATHEMATICS LETTERS, 2023, 142
  • [47] Global well-posedness for the three-dimensional Navier-Stokes-Maxwell system with damping
    Liu, Hui
    Sun, Chengfeng
    Xin, Jie
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [48] Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system
    Li, Hai-Liang
    Shou, Ling-Yun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 841 - 890
  • [49] WELL-POSEDNESS AND DECAY OF SOLUTIONS TO 3D GENERALIZED NAVIER-STOKES EQUATIONS
    Zhao, Xiaopeng
    Zhou, Yong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (02): : 795 - 813
  • [50] WELL-POSEDNESS OF A FULLY COUPLED NAVIER-STOKES/Q-TENSOR SYSTEM WITH INHOMOGENEOUS BOUNDARY DATA
    Abels, Helmut
    Dolzmann, Georg
    Liu, Yuning
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 3050 - 3077