Global well-posedness for the two-dimensional coupled chemotaxis-generalized Navier-Stokes system with logistic growth

被引:9
|
作者
Nie, Yao [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global well-posedness; Chemotaxis; Generalized Navier-Stokes; Logistic growth; WEAK SOLUTIONS; GUIDE;
D O I
10.1016/j.jde.2020.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate Cauchy problem for the two-dimensional incompressible chemotaxisNavier-Stokes equations with the lower fractional diffusion {partial derivative(t)n + u . del n - Delta n = -del . (n del c) + lambda n - mu n(2), partial derivative(t)c + u . del c - Delta c = -cn, partial derivative(t)u + u. del u + Lambda(2 alpha) u + del P = -n del phi, where Lambda := (-Delta)(1/2) and alpha is an element of [1/2, 1]. We obtain the global-in-time existence and uniqueness of weak solution to the equations for a class of large initial data by making use of the coupled structure of system and damping effect of the logistic source, and developing the L-4/3 (R-2) estimate for vorticity. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:5379 / 5433
页数:55
相关论文
共 50 条