GLOBAL WELL-POSEDNESS OF AXISYMMETRIC NAVIER-STOKES EQUATIONS WITH ONE SLOW VARIABLE

被引:0
|
作者
Peng, Weimin [1 ]
Zhou, Yi [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Navier-Stokes equations; axisymmetric; swirl; global well-posedness; large anisotropic data; INITIAL-VALUE-PROBLEM; AXIALLY-SYMMETRIC FLOWS; REGULARITY; SPACE; LP;
D O I
10.3934/dcds.2016.36.3845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global well-posedness of axisymmetric Navier-Stokes equations with swirl. We prove that there exists a global solution of Navier-Stokes equations under some weighted energy for a class of large anisotropic initial data slowly varying in the vertical variable.
引用
收藏
页码:3845 / 3856
页数:12
相关论文
共 50 条
  • [1] Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables
    Peng, Weimin
    Zhou, Yi
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (03) : 787 - 794
  • [2] Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables
    Weimin PENG
    Yi ZHOU
    [J]. Chinese Annals of Mathematics,Series B, 2017, (03) : 787 - 794
  • [3] Global well-posedness of incompressible Navier-Stokes equations with two slow variables
    Weimin Peng
    Yi Zhou
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 787 - 794
  • [4] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    [J]. ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [5] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111
  • [6] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    [J]. Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [7] Global well-posedness to the incompressible Navier-Stokes equations with damping
    Zhong, Xin
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (62)
  • [8] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [9] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    [J]. Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [10] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    [J]. ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455