SPATIO-TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR ELDERLY FALL DETECTION IN DEPTH VIDEO CAMERAS

被引:0
|
作者
Rahnemoonfar, Maryam [1 ]
Alkittawi, Hend [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci, Comp Vis & Remote Sensing Lab, Bina Lab, Corpus Christi, TX 78412 USA
关键词
VECTOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emergency departments treat around 2.5 million older people for fall injuries each year. Preserving the elderlys' right of aging in a home of their own choice is mandatory in today's world, as more elderly people are willing to live independently. Current implementations of fall detection systems lack accuracy. Despite efforts to detect elderly falls, it is possible that daily life activities, such as lying down, trigger false alarms. Moreover, privacy is the main concern for visual cameras. In this research we used deep convolutional neural networks to describe the overall space-time appearance pattern of a fall-event in depth video cameras. We developed a 3D convolutional neural network to capture both the spatial information available in video frames, and the temporal information presented through successive video frames. Our method outperformed the state-of-the art accuracy with a large margin.
引用
收藏
页码:2868 / 2873
页数:6
相关论文
共 50 条
  • [31] A Spatio-temporal Inpainting Method for Kinect Depth Video
    Zhang, Dongdong
    Yao, Ye
    Zang, Di
    Chen, Yanyu
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 67 - 70
  • [32] A Video-based Fall Detection Network by Spatio-temporal Joint-point Model on Edge Devices
    Guan, Ziyi
    Li, Shuwei
    Cheng, Yuan
    Man, Changhai
    Mao, Wei
    Wong, Ngai
    Yu, Hao
    [J]. PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 422 - 427
  • [33] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    [J]. Applied Intelligence, 2023, 53 : 28133 - 28152
  • [34] Interactive spatio-temporal feature learning network for video foreground detection
    Hongrui Zhang
    Huan Li
    [J]. Complex & Intelligent Systems, 2022, 8 : 4251 - 4263
  • [35] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Singh, Rituraj
    Saini, Krishanu
    Sethi, Anikeit
    Tiwari, Aruna
    Saurav, Sumeet
    Singh, Sanjay
    [J]. APPLIED INTELLIGENCE, 2023, 53 (23) : 28133 - 28152
  • [36] Interactive spatio-temporal feature learning network for video foreground detection
    Zhang, Hongrui
    Li, Huan
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4251 - 4263
  • [37] Attention Embedded Spatio-Temporal Network for Video Salient Object Detection
    Huang, Lili
    Yan, Pengxiang
    Li, Guanbin
    Wang, Qing
    Lin, Liang
    [J]. IEEE ACCESS, 2019, 7 : 166203 - 166213
  • [38] UAV network intrusion detection method based on spatio-temporal graph convolutional network
    Chen Z.
    Lyu N.
    Chen K.
    Zhang Y.
    Gao W.
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (05): : 1068 - 1076
  • [39] Spatio-Temporal Transformer Network for Video Restoration
    Kim, Tae Hyun
    Sajjadi, Mehdi S. M.
    Hirsch, Michael
    Schoelkopf, Bernhard
    [J]. COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 111 - 127
  • [40] DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
    Khan, Anusha
    Sargano, Allah Bux
    Habib, Zulfiqar
    [J]. MATHEMATICS, 2021, 9 (22)