Spatio-Temporal Transformer Network for Video Restoration

被引:95
|
作者
Kim, Tae Hyun [1 ,2 ]
Sajjadi, Mehdi S. M. [1 ,3 ]
Hirsch, Michael [1 ,4 ]
Schoelkopf, Bernhard [1 ]
机构
[1] Max Planck Inst Intelligent Syst, Tubingen, Germany
[2] Hanyang Univ, Seoul, South Korea
[3] Max Planck ETH Ctr Learning Syst, Tubingen, Germany
[4] Amazon Res, Tubingen, Germany
来源
关键词
Spatio-temporal transformer network; Spatio-temporal flow; Spatio-temporal sampler; Video super-resolution; Video deblurring; OPTICAL-FLOW;
D O I
10.1007/978-3-030-01219-9_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
State-of-the-art video restoration methods integrate optical flow estimation networks to utilize temporal information. However, these networks typically consider only a pair of consecutive frames and hence are not capable of capturing long-range temporal dependencies and fall short of establishing correspondences across several timesteps. To alleviate these problems, we propose a novel Spatio-temporal Transformer Network (STTN) which handles multiple frames at once and thereby manages to mitigate the common nuisance of occlusions in optical flow estimation. Our proposed STTN comprises a module that estimates optical flow in both space and time and a resampling layer that selectively warps target frames using the estimated flow. In our experiments, we demonstrate the efficiency of the proposed network and show state-of-the-art restoration results in video super-resolution and video deblurring.
引用
收藏
页码:111 / 127
页数:17
相关论文
共 50 条
  • [1] Spatio-Temporal Inference Transformer Network for Video Inpainting
    Tudavekar, Gajanan
    Saraf, Santosh S.
    Patil, Sanjay R.
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (01)
  • [2] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [3] Parallel Spatio-Temporal Attention Transformer for Video Frame Interpolation
    Ning, Xin
    Cai, Feifan
    Li, Yuhang
    Ding, Youdong
    [J]. ELECTRONICS, 2024, 13 (10)
  • [4] An Empirical Investigation of Efficient Spatio-Temporal Modeling in Video Restoration
    Fan, Yuchen
    Yu, Jiahui
    Liu, Ding
    Huang, Thomas S.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2159 - 2168
  • [5] Spatio-Temporal Deformable Attention Network for Video Deblurring
    Zhang, Huicong
    Xie, Haozhe
    Yao, Hongxun
    [J]. COMPUTER VISION - ECCV 2022, PT XVI, 2022, 13676 : 581 - 596
  • [6] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [7] Spatio-Temporal Filter Adaptive Network for Video Deblurring
    Zhou, Shangchen
    Zhang, Jiawei
    Pan, Jinshan
    Xie, Haozhe
    Zuo, Wangmeng
    Ren, Jimmy
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2482 - 2491
  • [8] Adaptive Spatio-Temporal Convolutional Network for Video Deblurring
    Duan, Fengzhi
    Yao, Hongxun
    [J]. IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 777 - 788
  • [9] Spatio-Temporal Convolution-Attention Video Network
    Diba, Ali
    Sharma, Vivek
    Arzani, Mohammad. M.
    Van Gool, Luc
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 859 - 869
  • [10] Point Spatio-Temporal Transformer Networks for Point Cloud Video Modeling
    Fan, Hehe
    Yang, Yi
    Kankanhalli, Mohan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 2181 - 2192