Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors

被引:15
|
作者
Choi, Hee Min [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Data augmentation algorithm; Eigenvalues; Geometric convergence rate; Markov chain; Markov operator; Monte Carlo; Sandwich algorithm; Trace-class operator; CHAIN MONTE-CARLO; QUANTILE REGRESSION; DATA AUGMENTATION; GIBBS SAMPLER; MODELS;
D O I
10.1016/j.jmva.2013.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let pi denote the intractable posterior density that results when the standard default prior is placed on the parameters in a linear regression model with iid Laplace errors. We analyze the Markov chains underlying two different Markov chain Monte Carlo algorithms for exploring pi. In particular, it is shown that the Markov operators associated with the data augmentation (DA) algorithm and a sandwich variant are both trace-class. Consequently, both Markov chains are geometrically ergodic. It is also established that for each i is an element of (1, 2, 3, ...}, the ith largest eigenvalue of the sandwich operator is less than or equal to the corresponding eigenvalue of the DA operator. It follows that the sandwich algorithm converges at least as fast as the DA algorithm. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [41] Penalized Regression, Standard Errors, and Bayesian Lassos
    Kyung, Minjung
    Gill, Jeff
    Ghosh, Malay
    Casella, George
    BAYESIAN ANALYSIS, 2010, 5 (02): : 369 - 411
  • [42] Objective Bayesian Analysis for the Student-t Linear Regression
    He, Daojiang
    Sun, Dongchu
    He, Lei
    BAYESIAN ANALYSIS, 2021, 16 (01): : 129 - 145
  • [43] Flexible objective Bayesian linear regression with applications in survival analysis
    Rubio, Francisco J.
    Yu, Keming
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (05) : 798 - 810
  • [44] ggmcmc: Analysis of MCMC Samples and Bayesian Inference
    Fernandez-i-Marin, Xavier
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (09):
  • [45] Bayesian analysis of panel data based on mcmc
    Zhang, Xia-Tao
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1167 - 1171
  • [46] Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroscedastic Errors
    Bugbee, Bruce D.
    Breidt, F. Jay
    van der Woerd, Mark J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (01) : 225 - 245
  • [47] WAVELET-BASED BAYESIAN ESTIMATION OF PARTIALLY LINEAR REGRESSION MODELS WITH LONG MEMORY ERRORS
    Ko, Kyungduk
    Qu, Leming
    Vannucci, Marina
    STATISTICA SINICA, 2009, 19 (04) : 1463 - 1478
  • [48] Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression
    Roy, Vivekananda
    Hobert, James P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 607 - 623
  • [49] BAYESIAN-ANALYSIS OF REGRESSION-MODEL WITH AUTO-CORRELATED ERRORS
    ZELLNER, A
    TIAO, GC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1964, 59 (307) : 763 - &
  • [50] A note on systematic errors in Bayesian retrieval algorithms
    Seo, Eun-Kyoung
    Liu, Guosheng
    Kim, Kwang-Yul
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2007, 85 (01) : 69 - 74