Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors

被引:14
|
作者
Choi, Hee Min [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Data augmentation algorithm; Eigenvalues; Geometric convergence rate; Markov chain; Markov operator; Monte Carlo; Sandwich algorithm; Trace-class operator; CHAIN MONTE-CARLO; QUANTILE REGRESSION; DATA AUGMENTATION; GIBBS SAMPLER; MODELS;
D O I
10.1016/j.jmva.2013.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let pi denote the intractable posterior density that results when the standard default prior is placed on the parameters in a linear regression model with iid Laplace errors. We analyze the Markov chains underlying two different Markov chain Monte Carlo algorithms for exploring pi. In particular, it is shown that the Markov operators associated with the data augmentation (DA) algorithm and a sandwich variant are both trace-class. Consequently, both Markov chains are geometrically ergodic. It is also established that for each i is an element of (1, 2, 3, ...}, the ith largest eigenvalue of the sandwich operator is less than or equal to the corresponding eigenvalue of the DA operator. It follows that the sandwich algorithm converges at least as fast as the DA algorithm. (C) 2013 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [31] Bayesian analysis of regression models with spatially correlated errors and missing observations
    Oh, MS
    Shin, DW
    Kim, HJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (04) : 387 - 400
  • [32] A Bayesian analysis of regression models with continuous errors with application to longitudinal studies
    Broemeling, LD
    Cook, P
    STATISTICS IN MEDICINE, 1997, 16 (04) : 321 - 332
  • [33] MULTIPLE LINEAR-REGRESSION ANALYSIS OF ERRORS IN DEAF SPEECH
    STROMBERG, H
    LEVITT, H
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1979, 65 : S69 - S70
  • [34] Reducing errors-in-variables bias in linear regression using compact genetic algorithms
    Satman, M. Hakan
    Diyarbakirlioglu, Erkin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (16) : 3216 - 3235
  • [35] Laplace approximations for censored linear regression models
    Papandonatos, GD
    Geisser, S
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1997, 25 (03): : 337 - 358
  • [36] Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
    Tomazella, Vera Lucia Damasceno
    Jesus, Sandra Rego
    Gazon, Amanda Buosi
    Louzada, Francisco
    Nadarajah, Saralees
    Nascimento, Diego Carvalho
    Rodrigues, Francisco Aparecido
    Ramos, Pedro Luiz
    SYMMETRY-BASEL, 2021, 13 (05):
  • [37] A Bayesian analysis of linear regression models with highly collinear regressors
    Pesaran, M. Hashem
    Smith, Ron R.
    ECONOMETRICS AND STATISTICS, 2019, 11 : 1 - 21
  • [38] A Novel Bayesian Linear Regression Model for the Analysis of Neuroimaging Data
    Belenguer-Llorens, Albert
    Sevilla-Salcedo, Carlos
    Desco, Manuel
    Soto-Montenegro, Maria Luisa
    Gomez-Verdejo, Vanessa
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [39] Penalized Regression, Standard Errors, and Bayesian Lassos
    Kyung, Minjung
    Gill, Jeff
    Ghosh, Malay
    Casella, George
    BAYESIAN ANALYSIS, 2010, 5 (02): : 369 - 411
  • [40] Objective Bayesian Analysis for the Student-t Linear Regression
    He, Daojiang
    Sun, Dongchu
    He, Lei
    BAYESIAN ANALYSIS, 2021, 16 (01): : 129 - 145