Objective Bayesian Analysis for the Student-t Linear Regression

被引:10
|
作者
He, Daojiang [1 ]
Sun, Dongchu [2 ,3 ]
He, Lei [1 ]
机构
[1] Anhui Normal Univ, Dept Stat, Wuhu 241003, Peoples R China
[2] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
[3] East China Normal Univ, Sch Stat, Shanghai 200062, Peoples R China
来源
BAYESIAN ANALYSIS | 2021年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
scale mixture of normals; reference prior; independent Jeffreys prior; STOCHASTIC VOLATILITY; REFERENCE PRIORS; MODELS; DISTRIBUTIONS; VARIANCE; FREEDOM;
D O I
10.1214/20-BA1198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, objective Bayesian analysis for the Student-t linear regression model with unknown degrees of freedom is studied. The reference priors under all the possible group orderings for the parameters in the model are derived. The posterior propriety under each reference prior is validated by considering a larger class of priors. Simulation studies are carried out to investigate the frequentist properties of Bayesian estimators based on the reference priors. Finally, the Bayesian approach is applied to two real data sets.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [1] Objective Bayesian analysis for the Student-t regression model
    Fonseca, Thais C. O.
    Ferreira, Marco A. R.
    Migon, Helio S.
    BIOMETRIKA, 2008, 95 (02) : 325 - 333
  • [2] Theoretical properties of Bayesian Student-t linear regression
    Gagnon, Philippe
    Hayashi, Yoshiko
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [3] Objective Bayesian analysis for geostatistical Student-t processes
    Ordonez, Jose A.
    Prates, Marcos O.
    Matos, Larissa A.
    Lachos, Victor H.
    JOURNAL OF SPATIAL SCIENCE, 2024, 69 (01) : 61 - 79
  • [4] Objective Bayesian analysis for the Student-t regression model (vol 95, pg 325, 2008)
    Fonseca, T. C. O.
    Ferreira, M. A. R.
    Migon, H. S.
    BIOMETRIKA, 2014, 101 (01) : 252 - 252
  • [5] Posterior property of Student-t linear regression model using objective priors
    Wang, Min
    Yang, Mingan
    STATISTICS & PROBABILITY LETTERS, 2016, 113 : 23 - 29
  • [6] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [7] Student-t Process Regression with Dependent Student-t Noise
    Tang, Qingtao
    Wang, Yisen
    Xia, Shu-Tao
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 82 - 89
  • [8] Bayesian Spectral Analysis With Student-t Noise
    Christmas, Jacqueline
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) : 2871 - 2878
  • [9] A non-iterative Bayesian sampling algorithm for censored Student-t linear regression models
    Yuan, Haijing
    Yang, Fengkai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3337 - 3355
  • [10] BAYESIAN AND NON-BAYESIAN ANALYSIS OF REGRESSION-MODEL WITH MULTIVARIATE STUDENT-T ERROR TERMS
    ZELLNER, A
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) : 400 - 405