Reaction-diffusion equations for the infinity Laplacian

被引:4
|
作者
Diehl, Nicolau M. L. [1 ]
Teymurazyan, Rafayel [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Rio Grande Sul, Canoas, Brazil
[2] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Infinity Laplacian; Regularity; Dead-core problems; Porosity; FREE-BOUNDARY; REGULARITY;
D O I
10.1016/j.na.2020.111956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive sharp regularity for viscosity solutions of an inhomogeneous infinity Laplace equation across the free boundary, when the right hand side does not change sign and satisfies a certain growth condition. We prove geometric regularity estimates for solutions and conclude that once the source term is comparable to a homogeneous function, then the free boundary is a porous set and hence, has zero Lebesgue measure. Additionally, we derive a Liouville type theorem. When near the origin the right hand side grows not faster than third degree homogeneous function, we show that if a non-negative viscosity solution vanishes at a point, then it has to vanish everywhere. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] REMARKS ON INVARIANCE IN REACTION-DIFFUSION EQUATIONS
    ALIKAKOS, ND
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (06) : 593 - 614
  • [42] Stochastic reaction-diffusion equations on networks
    Kovacs, M.
    Sikolya, E.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4213 - 4260
  • [43] INVARIANCE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Cannarsa, Piermarco
    Da Prato, Giuseppe
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 43 - 56
  • [44] Reaction-diffusion equations and ecological modeling
    Cosner, C.
    TUTORIALS IN MATHEMATICAL BIOSCIENCES IV: EVOLUTION AND ECOLOGY, 2008, 1922 : 77 - 115
  • [45] Nonlinear Nonlocal Reaction-Diffusion Equations
    Rodriguez-Bernal, Anibal
    Sastre-Gomez, Silvia
    ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 53 - 61
  • [46] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [47] IMPULSIVE QUENCHING FOR REACTION-DIFFUSION EQUATIONS
    CHAN, CY
    KE, L
    VATSALA, AS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (11) : 1323 - 1328
  • [48] Spirals in scalar reaction-diffusion equations
    Dellnitz, M
    Golubitsky, M
    Hohmann, A
    Stewart, I
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1487 - 1501
  • [49] Perturbative linearization of reaction-diffusion equations
    Puri, S
    Wiese, KJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2043 - 2054
  • [50] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):