Reaction-diffusion equations for the infinity Laplacian

被引:4
|
作者
Diehl, Nicolau M. L. [1 ]
Teymurazyan, Rafayel [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Rio Grande Sul, Canoas, Brazil
[2] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Infinity Laplacian; Regularity; Dead-core problems; Porosity; FREE-BOUNDARY; REGULARITY;
D O I
10.1016/j.na.2020.111956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive sharp regularity for viscosity solutions of an inhomogeneous infinity Laplace equation across the free boundary, when the right hand side does not change sign and satisfies a certain growth condition. We prove geometric regularity estimates for solutions and conclude that once the source term is comparable to a homogeneous function, then the free boundary is a porous set and hence, has zero Lebesgue measure. Additionally, we derive a Liouville type theorem. When near the origin the right hand side grows not faster than third degree homogeneous function, we show that if a non-negative viscosity solution vanishes at a point, then it has to vanish everywhere. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] BIFURCATION FROM INFINITY WITH APPLICATIONS TO REACTION-DIFFUSION SYSTEMS
    Aida, Chihiro
    Chen, Chao-Nien
    Kuto, Kousuke
    Ninomiya, Hirokazu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3031 - 3055
  • [22] A REMARK ON L-INFINITY BOUNDS FOR SOLUTIONS TO QUASI-LINEAR REACTION-DIFFUSION EQUATIONS
    KUIPER, HJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (01) : 261 - 269
  • [23] Waveform relaxation for reaction-diffusion equations
    Liu, Jun
    Jiang, Yao-Lin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5040 - 5055
  • [24] Stochastic Homogenization for Reaction-Diffusion Equations
    Lin, Jessica
    Zlatos, Andrej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 813 - 871
  • [25] TOPOLOGICAL TECHNIQUES IN REACTION-DIFFUSION EQUATIONS
    CONLEY, C
    SMOLLER, J
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (03) : 571 - 571
  • [26] Langevin Equations for Reaction-Diffusion Processes
    Benitez, Federico
    Duclut, Charlie
    Chate, Hugues
    Delamotte, Bertrand
    Dornic, Ivan
    Munoz, Miguel A.
    PHYSICAL REVIEW LETTERS, 2016, 117 (10)
  • [27] SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS
    HAGAN, PS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) : 762 - 786
  • [28] Reaction-diffusion equations in perforated media
    Dunyak, JP
    NONLINEARITY, 1997, 10 (02) : 377 - 388
  • [29] ENTROPY OF SCALAR REACTION-DIFFUSION EQUATIONS
    Slijepcevic, Sinisa
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 597 - 605
  • [30] On a Class of Reaction-Diffusion Equations with Aggregation
    Chen, Li
    Desvillettes, Laurent
    Latos, Evangelos
    ADVANCED NONLINEAR STUDIES, 2021, 21 (01) : 119 - 133