Effect of indium droplets on growth of InGaN film by molecular beam epitaxy

被引:12
|
作者
Zheng, Xiantong [1 ]
Liang, Hongwei [1 ]
Wang, Ping [2 ]
Sun, Xiaoxiao [2 ]
Chen, Zhaoying [2 ]
Wang, Tao [2 ]
Sheng, Bowen [2 ]
Wang, Yixin [2 ]
Chen, Ling [2 ]
Wang, Ding [2 ]
Rong, Xin [2 ]
Li, Mo [4 ]
Zhang, Jian [4 ]
Wang, Xinqiang [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China
[2] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[4] CAEP, Microsyst & Terahertz Res Ctr, 596 Yinhe Rd, Chengdu 610200, Sichuan, Peoples R China
关键词
In droplet; InGaN; MBE; QUANTUM-WELLS;
D O I
10.1016/j.spmi.2017.11.053
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Effect of indium (In) droplets on InGaN thin films grown by molecular beam epitaxy (MBE) has been investigated. The surface of InGaN covered by In droplets shows a smoother topography than that without droplets, indicating that the presence of In droplets is beneficial to the two dimensional growth. Beneath the In droplets, many ring-like structures are observed. The arrangement of these "ring" shows the movement of the In droplets during the InGaN growth. A qualitative growth model is proposed to explain the evolution of the InGaN surface morphology in In-droplet-induced-epitaxy process, giving an explanation that a local vapor-liquid-solid (VLS) system is preferentially formed at the edge of the droplets, leading to a high growth rate. Furthermore, the energy dispersive Xray spectroscopy results reveal that the relatively higher In/Ga flux ratio in the region covered by the In droplet results in a locally higher In content. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:650 / 656
页数:7
相关论文
共 50 条
  • [41] Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy
    Keen, B.
    Makin, R.
    Stampe, P. A.
    Kennedy, R. J.
    Sallis, S.
    Piper, L. J.
    McCombe, B.
    Durbin, S. M.
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (04) : 914 - 920
  • [42] Molecular-beam epitaxy control of HTSC film growth mechanisms
    Mamutin, VV
    ZHURNAL TEKHNICHESKOI FIZIKI, 1995, 65 (09): : 161 - 170
  • [43] Effects of film polarities on InN growth by molecular-beam epitaxy
    Xu, K
    Yoshikawa, A
    APPLIED PHYSICS LETTERS, 2003, 83 (02) : 251 - 253
  • [44] Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy
    B. Keen
    R. Makin
    P. A. Stampe
    R. J. Kennedy
    S. Sallis
    L. J. Piper
    B. McCombe
    S. M. Durbin
    Journal of Electronic Materials, 2014, 43 : 914 - 920
  • [45] Molecular beam epitaxy of InGaN thin films on Si(111): Effect of substrate nitridation
    Romanyuk, Yaroslav E.
    Kreier, Daniel
    Cui, Yi
    Yu, Kin Man
    Ager, Joel W., III
    Leone, Stephen R.
    THIN SOLID FILMS, 2009, 517 (24) : 6512 - 6515
  • [46] Indium-modified growth kinetics of cubic and hexagonal GaN in molecular beam epitaxy
    Adelmann, C
    Langer, R
    Martinez-Guerrero, E
    Mariette, H
    Feuillet, G
    Daudin, B
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (08) : 4322 - 4325
  • [47] InN growth by plasma-assisted molecular beam epitaxy with indium monolayer insertion
    Yao, Yongzhao
    Sekiguchi, Takashi
    Sakuma, Yoshiki
    Ohashi, Naoki
    Adachi, Yutaka
    Okuno, Hanako
    Takeguchi, Masaki
    CRYSTAL GROWTH & DESIGN, 2008, 8 (03) : 1073 - 1077
  • [48] Nanoscale simulation of Indium Phosphide epitaxy by molecular beam
    Flicstein, J
    Maisonneuve, D
    Guillonneau, E
    Palmier, JF
    Harmand, JC
    Barthe, F
    Moison, JM
    ALT'99 INTERNATIONAL CONFERENCE ON ADVANCED LASER TECHNOLOGIES, 2000, 4070 : 323 - 330
  • [49] Desorption of indium during the growth of GaAs/InGaAs/GaAs heterostructures by molecular beam epitaxy
    Mozume, Teruo
    Ohbu, Isao
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1992, 31 (10): : 3277 - 3281
  • [50] Indium: A surfactant for the growth of ?/?-Ga2O3 by molecular beam epitaxy
    Karg, Alexander
    Hinz, Alexander
    Figge, Stephan
    Schowalter, Marco
    Vogt, Patrick
    Rosenauer, Andreas
    Eickhoff, Martin
    APL MATERIALS, 2023, 11 (09)