Hyperbolic formulations of general relativity with Hamiltonian structure

被引:4
|
作者
Hilditch, David [1 ]
Richter, Ronny [2 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 12期
关键词
SYSTEMS; 2ND-ORDER;
D O I
10.1103/PhysRevD.86.123017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the aim of deriving symmetric hyperbolic free-evolution systems for general relativity (GR) that possess Hamiltonian structure and allow for the popular puncture coordinate gauge condition, we analyze the hyperbolicity of Hamiltonian systems. We develop helpful tools which are applicable to either the first order in time, second order in space or the fully second order form of the equations of motion. For toy models we find that the Hamiltonian structure can simplify the proof of symmetric hyperbolicity. In GR we use a special structure of the principal part to prove symmetric hyperbolicity of a formulation that includes conditions which are very similar to the puncture coordinate gauge. DOI: 10.1103/PhysRevD.86.123017
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [31] Hamiltonian approach to cosmological perturbations in general relativity
    Barbashov, B. M.
    Pervushin, V. N.
    Zakharov, A. F.
    Zinchuk, Va.
    NUCLEAR SCIENCE AND SAFETY IN EUROPE, 2006, : 125 - +
  • [32] THE HAMILTONIAN OF GENERAL-RELATIVITY ON A NULL SURFACE
    GOLDBERG, JN
    FOUNDATIONS OF PHYSICS, 1984, 14 (12) : 1211 - 1216
  • [33] TRIAD APPROACH TO THE HAMILTONIAN OF GENERAL-RELATIVITY
    GOLDBERG, JN
    PHYSICAL REVIEW D, 1988, 37 (08): : 2116 - 2120
  • [34] The Hamiltonian formulation of general relativity: myths and reality
    Kiriushcheva, Natalia
    Kuzmin, Sergei V.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (03): : 576 - 615
  • [35] Conformal and affine Hamiltonian dynamics of general relativity
    Pervushin, Victor N.
    Arbuzov, Andrej B.
    Barbashov, Boris M.
    Nazmitdinov, Rashid G.
    Borowiec, Andrzej
    Pichugin, Konstantin N.
    Zakharov, Alexander F.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (11) : 2745 - 2783
  • [36] Hamiltonian analysis of the BFCG formulation of general relativity
    Mikovic, A.
    Oliveira, M. A.
    Vojinovic, M.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [37] Diffeomorphism invariance in the Hamiltonian formulation of General Relativity
    Kiriushcheva, N.
    Kumin, S. V.
    Racknor, C.
    Vailuri, S. R.
    PHYSICS LETTERS A, 2008, 372 (31) : 5101 - 5105
  • [38] The Principle of Covariance and the Hamiltonian Formulation of General Relativity
    Tessarotto, Massimo
    Cremaschini, Claudio
    ENTROPY, 2021, 23 (02) : 1 - 33
  • [39] Hamiltonian analysis of general relativity with the Immirzi parameter
    Sá, NBE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (03): : 261 - 272
  • [40] THE CANONICAL HAMILTONIAN FOR VIERBEIN GENERAL-RELATIVITY
    CHARAP, JM
    NELSON, JE
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (06) : 1061 - 1067