The Hamiltonian formulation of general relativity: myths and reality

被引:33
|
作者
Kiriushcheva, Natalia [1 ,2 ]
Kuzmin, Sergei V. [1 ,2 ]
机构
[1] Huron Univ Coll, Fac Arts & Social Sci, London, ON N6G 1H3, Canada
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2011年 / 9卷 / 03期
关键词
gravity; general relativity; Hamiltonian formulation; CARTAN INTEGRAL INVARIANT; CANONICAL-TRANSFORMATIONS; EINSTEIN-HILBERT; QUANTUM-THEORY; 1ST-ORDER FORMALISM; TETRAD GRAVITY; GAUGE; DIFFEOMORPHISMS; ENERGY; SPACE;
D O I
10.2478/s11534-010-0072-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A conventional wisdom often perpetuated in the literature states that: (i) a 3 + 1 decomposition of spacetime into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [21] and of ADM [22] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [45] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. By direct calculation we show that Dirac's references to space-like surfaces are inessential and that such surfaces do not enter his calculations. In addition, we show that his assumption g (0k) = 0, used to simplify his calculation of different contributions to the secondary constraints, is unwarranted; yet, remarkably his total Hamiltonian is equivalent to the one computed without the assumption g (0k) = 0. The secondary constraints resulting from the conservation of the primary constraints of Dirac are in fact different from the original constraints that Dirac called secondary (also known as the "Hamiltonian" and "diffeomorphism" constraints). The Dirac constraints are instead particular combinations of the constraints which follow directly from the primary constraints. Taking this difference into account we found, using two standard methods, that the generator of the gauge transformation gives diffeomorphism invariance in four-dimensional space-time; and this shows that points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation of GR. We also demonstrate that ADM and Dirac formulations are related by a transformation of phase-space variables from the metric (g) (mu nu) to lapse and shift functions and the three-metric g (km) , which is not canonical. This proves that point (iv) is incorrect. Points (i-iii) are mere consequences of using a non-canonical change of variables and are not an intrinsic property of either the Hamilton-Dirac approach to constrained systems or Einstein's theory itself.
引用
收藏
页码:576 / 615
页数:40
相关论文
共 50 条
  • [1] Hamiltonian formulation of general relativity in the teleparallel geometry
    Maluf, JW
    da Rocha-Neto, JF
    PHYSICAL REVIEW D, 2001, 64 (08)
  • [2] Hamiltonian analysis of the BFCG formulation of general relativity
    Mikovic, A.
    Oliveira, M. A.
    Vojinovic, M.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [3] Diffeomorphism invariance in the Hamiltonian formulation of General Relativity
    Kiriushcheva, N.
    Kumin, S. V.
    Racknor, C.
    Vailuri, S. R.
    PHYSICS LETTERS A, 2008, 372 (31) : 5101 - 5105
  • [4] The Principle of Covariance and the Hamiltonian Formulation of General Relativity
    Tessarotto, Massimo
    Cremaschini, Claudio
    ENTROPY, 2021, 23 (02) : 1 - 33
  • [5] NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY
    ASHTEKAR, A
    PHYSICAL REVIEW D, 1987, 36 (06): : 1587 - 1602
  • [6] ROLE OF SURFACE INTEGRALS IN HAMILTONIAN FORMULATION OF GENERAL RELATIVITY
    REGGE, T
    TEITELBOIM, C
    ANNALS OF PHYSICS, 1974, 88 (01) : 286 - 318
  • [7] General relativity on a null surface: Hamiltonian formulation in the teleparallel geometry
    Maluf, JW
    da Rocha-Neto, JF
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (02) : 173 - 185
  • [8] General Relativity on a Null Surface: Hamiltonian Formulation in the Teleparallel Geometry
    J. W. Maluf
    J. F. Da Rocha-Neto
    General Relativity and Gravitation, 1999, 31 : 173 - 185
  • [9] The Hamiltonian of Einstein affine-metric formulation of General Relativity
    Kiriushcheva, N.
    Kuzmin, S. V.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (1-2): : 389 - 422
  • [10] Constraints and reality conditions in the Ashtekar formulation of general relativity
    Yoneda, G
    Shinkai, H
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (04) : 783 - 790