Hamiltonian analysis of general relativity with the Immirzi parameter

被引:69
|
作者
Sá, NBE
机构
[1] Univ Stockholm, Fysikum, S-11385 Stockholm, Sweden
[2] Univ Acores, DCTD, P-9500 Ponto Delgada, Portugal
[3] Univ Acores, Sverige, P-9500 Ponto Delgada, Portugal
来源
关键词
D O I
10.1142/S0218271801000858
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Starting from a Lagrangian we perform the full constraint analysis of the Hamiltonian for General relativity in the tetrad-connection formulation for an arbitrary value of the Immirzi parameter and solve the second class constraints, presenting the theory with a Hamiltonian composed of first class constraints which are the generators of the gauge symmetries of the action. In the time gauge we then recover Barbero's formulation of gravity.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 50 条
  • [2] Immirzi parameter in quantum general relativity
    Rovelli, C
    Thiemann, T
    PHYSICAL REVIEW D, 1998, 57 (02) : 1009 - 1014
  • [3] Comment on "Immirzi parameter in quantum general relativity"
    Samuel, J
    PHYSICAL REVIEW D, 2001, 64 (04)
  • [4] Lorentz-covariant Hamiltonian analysis of BF gravity with the Immirzi parameter
    Celada, Mariano
    Montesinos, Merced
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (20)
  • [5] Extent of the Immirzi ambiguity in quantum general relativity
    Marugán, GAM
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) : L63 - L69
  • [6] Hamiltonian analysis in new general relativity
    Blixt, Daniel
    Hohmann, Manuel
    Krssak, Martin
    Pfeifer, Christian
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 352 - 357
  • [7] Analysis of the Hamiltonian formulations of linearized general relativity
    K. R. Green
    N. Kiriushcheva
    S. V. Kuzmin
    The European Physical Journal C, 2011, 71
  • [8] Hamiltonian analysis of the BFCG formulation of general relativity
    Mikovic, A.
    Oliveira, M. A.
    Vojinovic, M.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [9] Analysis of the Hamiltonian formulations of linearized general relativity
    Green, K. R.
    Kiriushcheva, N.
    Kuzmin, S. V.
    EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (06):
  • [10] Discrete Hamiltonian for general relativity
    Ziprick, Jonathan
    Gegenberg, Jack
    PHYSICAL REVIEW D, 2016, 93 (04)