A NEW QUANTITY IN RIEMANN-FINSLER GEOMETRY

被引:1
|
作者
Mo, Xiaohuan [1 ]
Shen, Zhongmin [2 ]
Liu, Huaifu [3 ]
机构
[1] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
基金
美国国家科学基金会;
关键词
SCALAR FLAG CURVATURE; RANDERS METRICS;
D O I
10.1017/S0017089512000225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study a new Finslerian quantity (C) over cap defined by the Riemannian curvature. We prove that the newFinslerian quantity is a non-Riemannian quantity for a Finsler manifold with dimension n = 3. Then we study Finsler metrics of scalar curvature. We find that the (C) over cap -curvature is closely related to the flag curvature and the H-curvature. We show that (C) over cap -curvature gives, a measure of the failure of a Finsler metric to be of weakly isotropic flag curvature. We also give a simple proof of the Najafi-Shen-Tayebi' theorem.
引用
下载
收藏
页码:637 / 645
页数:9
相关论文
共 50 条
  • [41] Para-CR Structures of Codimension 2 on Tangent Bundles in Riemann–Finsler Geometry
    Mircea CRASMAREANU
    Laurian-Ioan PISCORAN
    Acta Mathematica Sinica,English Series, 2014, 30 (11) : 1877 - 1884
  • [42] Finsler geometry
    Shimada, H
    Sabau, VS
    FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 15 - 24
  • [43] GEOMETRY OF SPACETIME AND FINSLER GEOMETRY
    Tavakol, Reza
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1678 - 1685
  • [44] Pseudo-Riemann's quartics in Finsler's geometry-two-dimensional case
    Itin, Yakov
    13TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, IARD 2022, 2023, 2482
  • [45] On Finsler Geometry and Applications in Mechanics: Review and New Perspectives
    Clayton, J. D.
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [46] NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS
    Crasmareanu, Mircea
    MATHEMATICAL REPORTS, 2014, 16 (01): : 83 - 93
  • [47] A SOLUTION IN THE FINSLER GEOMETRY
    MATONO, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (03): : 343 - 349
  • [48] ON A CONNECTION IN FINSLER GEOMETRY
    SHEN, ZM
    HOUSTON JOURNAL OF MATHEMATICS, 1994, 20 (04): : 591 - 621
  • [49] Finsler geometry inspired
    Kozma, L
    Tamássy, L
    FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 9 - 14
  • [50] Multimetric Finsler geometry
    Carvalho, Patricia
    Landri, Cristian
    Mistry, Ravi
    Pinzul, Aleksandr
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (03):